Часть I

Почему для понимания разума необходима новая физика?. Невычислимость сознательного мышления

3. О невычислимости в математическом мышлении


...

3.14. Фундаментальное противоречие

Предшествующая дискуссия в сущности показывает, что «непознаваемый и неосознаваемый алгоритм F», который, согласно допущению III, лежит в основе восприятия математической истины, вполне возможно свести к алгоритму осознанно познаваемому — при условии, что нам, следуя заветам адептов ИИ, удастся запустить некую систему процедур, которые в конечном счете приведут к созданию робота, способного на математические рассуждения на человеческом (а то и выше) уровне. Непознаваемый алгоритм F заменяется при этом вполне познаваемой формальной системой Q(M).

Прежде чем мы приступим к подробному рассмотрению этого аргумента, необходимо обратить внимание на один существенный момент, который мы до сих пор незаслуженно игнорировали — речь идет о возможности привнесения на разных этапах процесса развития робота неких случайных элементов взамен раз и навсегда фиксированных механизмов. В свое время нам еще предстоит обратиться к этому вопросу, пока же я буду полагать, что каждый такой случайный элемент следует рассматривать как результат выполнения какого-либо псевдослучайного (хаотического) вычисления. Как было показано ранее (§§1.9, 3.11), таких псевдослучайных компонентов на практике оказывается вполне достаточно. К случайным элементам в «образовании» робота мы еще вернемся в §3.18, где более подробно поговорим о подлинной случайности в применении к нашему случаю, а пока, говоря о «наборе механизмов M», я буду предполагать, что все эти механизмы действительно являются целиком и полностью вычислительными и свободными от какой бы то ни было реальной неопределенности.

Суть противоречия заключается в том, что на месте алгоритма F, фигурировавшего в наших предыдущих рассуждениях (например, того алгоритма, о котором мы говорили в §3.2 в связи с допущением I), с неизбежностью оказывается формальная система Q(M). Вследствие чего случай III эффективно сводится к случаю I и тем самым не менее эффективно из рассмотрения исключается. Выступая в рамках данного доказательства в роли сторонников точек зрения A и B, мы предполагаем, что наш робот в принципе способен (с помощью обучающих процедур той же природы, что установили для него мы) достичь в конечном счете любых математических результатов, каких в состоянии достичь человек. Мы должны также допустить, что робот способен достичь и таких результатов, какие человеку в принципе не по силам. Так или иначе, нашему роботу предстоит обзавестись способностью к пониманию мощи аргументации Гёделя (или, по крайней мере, способностью сымитировать такое понимание — согласно B) Иначе говоря, относительно любой заданной (достаточно обширной) формальной системы H робот должен оказаться в силах неопровержимо установить тот факт, что из обоснованности системы H следует истинность его гёделевского24 утверждения G(H), а также то, что утверждение G(H) не является теоремой системы H. В частности, робот сможет установить, что из обоснованности системы Q(M) неопровержимо следует истинность утверждения G(Q(M)); эта же обоснованность предполагает, что утверждение G(Q(M)) не является теоремой системы Q(M).


24 В ранних изданиях этой книги вместо обозначения G(F) в оставшейся части главы 3 использовалось обозначение Ω(F). Однако G(F), на мой взгляд, представляется в данном случае более уместным (см. также §2.8 и комментарии к возражению Q10, §2.10).


С помощью в точности тех же рассуждений, какими мы воспользовались в §3.2 применительно к человеческому математическому пониманию, непосредственно из вышеизложенных соображений выводится, что робот никоим образом не способен твердо поверить в то, что совокупность его собственных — и, на его взгляд, неопровержимых — математических убеждений действительно эквивалентна некоей формальной системе Q(M). И это несмотря на тот факт, что мы (выступая в роли соответствующих экспертов по проблемам ИИ) прекрасно осведомлены о том, что в основе системы математических убеждений робота лежит не что-нибудь, а именно набор механизмов M, что автоматически означает, что система неопровержимых убеждений робота является полным эквивалентом системы Q(M). Если бы робот вдруг твердо поверил в то, что все его убеждения укладываются в рамки системы Q(M), то тогда ему пришлось бы поверить и в обоснованность этой самой системы Q(M). Соответственно, ему также пришлось бы одновременно поверить и в истинность утверждения G(Q(M)), и в то, что упомянутое утверждение в его систему убеждений не входит — неразрешимое противоречие! Иначе говоря, робот никак не может знать о том, что он сконструирован в соответствии с тем или иным набором механизмов M. А поскольку об этой особенности его конструкции знаем — или по крайней мере, в состоянии узнать — мы с вами, то получается, что нам доступны такие математические истины (например, утверждение G(Q(M))), которые роботу оказываются не по силам, хотя изначально предполагалось, что способности робота будут равны способностям человека (или даже превысят их).