Часть I
Почему для понимания разума необходима новая физика?. Невычислимость сознательного мышления
3. О невычислимости в математическом мышлении
3.5. Может ли алгоритм быть непознаваемым?
В соответствии с вариантом III, математическое понимание представляет собой результат выполнения некоего непознаваемого алгоритма. Что же конкретно означает определение «непознаваемый» применительно к алгоритму? В предшествующих разделах настоящей главы мы занимались вопросами принципиальными. Так, утверждая, что неопровержимая истинность некоторого Π1-высказывания доступна математическому пониманию человека, мы, по сути, утверждали, что данное Π1-высказывание постижимо в принципе, отнюдь не имея в виду, что каждый математик когда-нибудь да сталкивался с реальной демонстрацией его истинности. Применительно к алгоритму, однако, нам потребуется несколько иная интерпретация термина «непознаваемый». Я буду понимать его так: рассматриваемый алгоритм является настолько сложным, что даже описание его практически неосуществимо.
Когда мы говорили о выводах, осуществляемых в рамках какой-то конкретной познаваемой формальной системы, или о предполагаемых результатах применения того или иного известного алгоритма, рассуждения в терминах принципиально возможного или невозможного и в самом деле выглядели как нельзя более уместными. Вопросы возможности или невозможности вывода того или иного конкретного предположения из такой формальной системы или алгоритма рассматривались в «принципиальном» контексте в силу элементарной необходимости. Похожим образом обстоит дело с установлением истинности Π1-высказываний. Π1-высказывание признается истинным, если его можно представить в виде операции некоторой машины Тьюринга, незавершаемой принципиально, вне зависимости от того, что мы могли бы получить на практике путем непосредственных вычислений. (Об этом мы говорили в комментарии к возражению Q8.) Аналогично, утверждение, что какое-то конкретное предположение выводимо (либо невыводимо) в рамках некоей формальной системы, следует понимать в «принципиальном» смысле, поскольку такое утверждение, в сущности, представляет собой вид утверждения об истинном (или, соответственно, ложном)характере какого-то конкретного Π1-высказывания (см. окончание обсуждения возражения Q10). Соответственно, когда нас интересует выводимость предположения в рамках некоторого неизменного набора правил, «познаваемость» всегда будет пониматься именно в таком «принципиальном» смысле.
Если же нам предстоит решить вопрос о «познаваемости» самих правил, то здесь необходимо прибегнуть к «практическому» подходу. Принципиально возможно описать любую формальную систему, машину Тьюринга, либо Π1-высказывание, а следовательно, если мы хотим, чтобы вопрос об их «непознаваемости» имел хоть какой-нибудь смысл, нам следует рассматривать его именно в плоскости возможности их практической реализации. В принципе, познаваемым является абсолютно любой алгоритм, каким бы он ни был, — в том смысле, что осуществляющая этот алгоритм операция машины Тьюринга становится «известной», как только становится известным натуральное число, являющееся кодовым обозначением данной операции (например, согласно правилам нумерации машин Тьюринга, приведенным в НРК). Нет решительно никаких оснований предполагать, что принципиально непознаваемым может оказаться такой объект, как натуральное число. Все натуральные числа (а значит, и алгоритмические операции) можно представить в виде последовательности 0, 1, 2, 3, 4, 5, 6, …, двигаясь вдоль которой, мы — в принципе — можем со временем достичь любого натурального числа, каким бы большим это число ни было! Практически же, число может оказаться настолько огромным, что добраться до него таким способом в обозримом будущем не представляется возможным. Например, номер машины Тьюринга, описанной в НРК (на с. 56), явно слишком велик, чтобы его можно было получить на практике посредством подобного перечисления. Даже если мы были бы способны выдавать каждую последующую цифру за наименьший теоретически определимый временной промежуток (в масштабе времени Планка равный приблизительно 0,5 × 10-43 с, см. §6.11), то и в этом случае за все время существования Вселенной, начиная от Большого Взрыва и до настоящего момента, нам не удалось бы добраться до числа, двоичное представление которого содержит более 203 знаков. В числе, о котором только что упоминалось, знаков более чем в 20 раз больше — однако это ничуть не мешает ему быть «познаваемым» в принципе, причем в НРК, это число определено в явном виде.
Практически «непознаваемым» следует считать такое натуральное число (или операцию машины Тьюринга), сложность одного только описания которого оказывается недоступной человеческим возможностям. Сказано, на первый взгляд, довольно громко, однако, зная о конечной природе человека, можно смело утверждать, что какой-то предел так или иначе существовать должен, а следовательно, должны существовать и числа, находящиеся за этим пределом, описать которые человек не в состоянии. (См. также комментарий к возражению Q8.) В соответствии с возможностью III, нам следует полагать, что за пределами познаваемости алгоритм F (предположительно лежащий в основе математического понимания) оказывается именно вследствие неимоверной сложности и чрезвычайной детализированности своего описания — причем речь идет исключительно об «описуемости» алгоритма, а не о познаваемости его как алгоритма, которым, предполагается, мы пользуемся-таки в нашей интеллектуальной деятельности. Требование «неописуемости», собственно, и отделяет случай III от случая II. Иными словами, рассматривая случай III, мы должны учитывать возможность того, что наших человеческих способностей может оказаться недостаточно даже для того, чтобы описать это самое число, не говоря уже о том, чтобы установить, обладает ли оно свойствами, какими должно обладать число, определяющее алгоритмическую операцию, в соответствии с которой работает наше же математическое понимание.
Отметим, что в роли ограничителя познаваемости не может выступать просто величина числа. Не представляет никакой сложности описать числа, настолько огромные, что они превзойдут по величине все числа, которые могут потребоваться для описания алгоритмических операций, определяющих поведение любого организма в наблюдаемой Вселенной (взять хотя бы такое легко описываемое число, как 2265536, о котором мы упоминали в комментарии к Q8, — это число далеко превосходит количество всех возможных состояний Вселенной для всего вещества, содержащегося в границах наблюдаемой нами Вселенной{42}). За пределами человеческих возможностей должно оказаться именно точное описание искомого числа, величина же его особой роли не играет.
Допустим (в полном согласии с III), что описание такого алгоритма F человеку и в самом деле не по силам. Что из этого следует в отношении перспектив разработки высокоуспешной стратегии создания ИИ (как по «сильным», так и по «слабым» принципам — иначе говоря, в соответствии с точками зрения как A, так и B)? Адепты полностью автоматизированных ИИ-систем (т.е. сторонники A непременно, а также, возможно, кто-то из лагеря B) предвосхищают появление в конечном итоге роботов, способных достичь уровня математических способностей человека и, возможно, превзойти этот уровень. Иными словами (если согласиться с вариантом III), непременным компонентом контрольной системы такого робота-математика должен стать тот самый, недоступный человеческому пониманию алгоритм F. Отсюда, по всей видимости, следует, что стратегия создания ИИ, нацеленная на получение именно такого результата, обречена на провал. Причина проста — если для достижения цели необходим алгоритм F, который в принципе не способен описать ни один человек, то где же тогда этот алгоритм взять?
Однако наиболее амбициозные сторонники идеи ИИ рисуют себе совсем другие картины. Они предвидят, что необходимый алгоритм F будет получен не в одночасье, но поэтапно — по мере того, как сами роботы будут постепенно повышать свою эффективность с помощью алгоритмов (восходящих) обучения и накопления опыта. Более того, самые совершенные роботы не будут, скорее всего, созданы непосредственно людьми, а явятся продуктом деятельности других роботов{43}, возможно, несколько более примитивных, нежели ожидаемые нами роботы-математики; кроме того, в процессе развития роботов будет, возможно, принимать участие и некое подобие дарвиновской эволюции, в результате чего от поколения к поколению роботы будут становиться все более совершенными. Разумеется, не обходится и без утверждений в том духе, что именно посредством подобных, в общем-то, процессов нам самим удалось оснастить свои «нейронные компьютеры» неким для нас не познаваемым алгоритмом F, на котором и работает наше собственное математическое понимание.
В нескольких последующих разделах я покажу, что при всей привлекательности подобных процессов проблема, в сущности, остается нерешенной: если сами процедуры, с помощью которых предполагается создать ИИ, являются прежде всего алгоритмическими и познаваемыми, то любой полученный таким образом алгоритм F также должен быть познаваемым. В этом случае вариант III сводится либо к варианту I, либо к варианту II, которые мы исключили в §§3.2-3.4 по причине фактической невозможности (вариант I) или, по меньшей мере, крайнего неправдоподобия (вариант II). Более того, если исходить из допущения, что интересующие нас алгоритмические процедуры познаваемы, то нам, вообще говоря, следует отдать предпочтение именно варианту I. Соответственно, вариант III (равно как и, по смыслу, вариант II) также следует признать практически несостоятельным.
Читателю, который искренне верит в то, что возможный вариант III открывает наиболее вероятный путь к созданию вычислительной модели разума, я рекомендую обратить на приведенные выше аргументы самое пристальное внимание и тщательнейшим образом их изучить. Не сомневаюсь, что он придет к тому же выводу, к какому пришел я: если допустить, что математическое понимание и в самом деле осуществляется в соответствии с вариантом III, то единственным хоть сколько-нибудь правдоподобным объяснением происхождения нашего собственного алгоритма F остается считать божественное вмешательство — то самое сочетание A/D, о котором мы говорили в конце §1.3, — а такое объяснение, конечно же, не утешит тех, кто лелеет амбициозные перспективные планы по созданию компьютерного ИИ.