ЧАСТЬ ЧЕТВЕРТАЯ. ПРОБЛЕМА НЕВИДИМОСТИ

24 (5).1. Пространство целей как множество знаний суггестивной угрозы

Невежественные люди исполняют свои обязанности ради плодов их, мудрые же делают это ради того, чтобы вывести людей на правильный путь.

Бхагават-гита как она есть.

Исследуя суггестивные воздействия, мы тем самым исследуем пространство скрытых целей.

Изучая какую-либо ситуацию или незнакомый объект, исследователь опирается на аналогии, понятные хотя бы ему самому. Для того, чтобы привычнее было продвигаться вперед, определим множество целей информационной системы в качестве базовых элементов суггестивного пространства информационной системы. После чего установи" соответствующие метрические отношения на этом пространстве. Но прежде чем поступить так, имеет смысл дать хотя бы краткое содержательное наполнена понятию "цель" (более подробное исследование проблемы цели см. в [78]).

И.П.Павлов: "Рефлекс цели имеет огромное жизненное значение, он есть основная форма жизненной энергии каждого из нас. Вся жизнь, все ее улучшения, вся ее культура делается рефлексом цели, делается только людьми, стремящимися к той или другой поставленной цели... Наоборот, жизнь перестает привязывать к себе, как только исчезает цель".

М.Экхарт ("Духовные проповеди и рассуждения". М. Политиздат", 1991.): "Каждое творение делает свое дело ради какой-нибудь цели. Цель всегда первое в мысли и последнее в деле. И Бог во всех своих делах предполагает весьма благую цель — Себя Самого, и хочет привести душу со всеми ее силами к этой цели: к Себе Самому".

Ф.Ницше ("Так говорил Заратустра". М.: СП "Интербук". 1990): "Если у человечества нет цели, то есть ли оно само, или еще нет его?"

Как уже говорилось выше, суггестивное воздействие это воздействие по формированию у информационной обучающейся системы скрытых целей, т.е. целей, привнесенных извне, включенных в общую схему целеобразования и реализации целей, т.е. скрытых другими целями, и поэтому неосознаваемых самой системой.

Для исследования процессов целеобразования и развития скрытых целей необходимо, чтобы в модели присутствовали такие понятия как цель, скрытая цель, реализованная цель.

Предлагается в качестве базовой основы для создания средств моделирования процесса целеобразовапия и реализации цели опираться на какой-либо из формальных языков, обладающий такой структурой, в которой названные выше ключевые понятия могли бы фигурировать в качестве базовых элементов. Таким языком, пусть не идеальным, но вполне приемлемым после некоторой доработки, может стать язык искусственного интеллекта Пролог.

Психология bookap

Напомним, что Пролог допускает три вида выражений: факты, правила, вопросы (цели).

Программа на языке Пролог — это текст, содержащий факты и правила. Текст этот становится процессом (начинает себя реализовывать), если сформулирован вопрос, т.е. определена цель.

К сожалению, стандартный Пролог не позволяет по одному и тому же тексту сформулировать несколько взаимопротиворечивых вопросов, параллельно корректирующих правила исходного текста программы.

Психология bookap

Представим себе, что в нашей модели подобные ограничения отсутствуют, более того, наши правила могут самомодифицироваться, т.е. одно правило способно изменить другое, самого себя, и, естественно, правила способны изменять базу данных.

Более того, из вне в базу данных постоянно поступают новые факты, которые будем называть входными данными.

Таким образом, мы имеем текст из правил и фактов, составляющих базу данных, и ряд вопросов (целей).

Психология bookap

Далее утверждаем, что каждая цель, будучи достигнутой, становится правилом.

Утверждаем, что в информационной самообучающейся системе постоянно происходит изменение фактов из-за постоянного притока входных данных. Подобное накопление неизбежно приводит к тому, что какое-либо правило может быть системой признано ошибочным, т.е. вполне допустимо, что в тексте возникнет правило, отрицающее данное правило. Будем считать, что ошибочные правила превращаются в вопрос (цель).

Каждая цель, активизируя правила, пытается перестроить текст таким образом, чтобы стать достижимой, т.е. превратится в правило. Образно говоря, Цели — это своего рода свободные, самостоятельные "гравитационные массы", искривляющие пространство правил.

Психология bookap

Утверждаем, что вопросы рождаются не только гибнущими правилами, но и фактами, не нашедшими себе место в правилах.

Таким образом (по аналогии с Прологом):

правило — это выражение, состоящее из левой и правой части, разделенные символом ":-";

факт — это правило без правой части;

вопрос — это правило, в котором вместо левой части стоит знак вопроса, т.е. правило без левой части. Например:

Правило:Прием_пищи (Y):-еда (Х, Y), время (t, t1, Y).

Психология bookap

Факт:Прием_пищи (Y).

Вопрос (цель) :?:- еда (Х, Y), время (t, t1, Y).

В этой модели получается, что именно цели устраивают настоящую "битву" над полем текста за возможность реализоваться, т.е. превратится в правило. Чем закончится данное сражение? Какими характеристиками должна обладать цель, чтобы выйти победителем? Обратите внимание, что все это очень похоже на рост лазерных мод, о которых говорилось ранее: "... На поддержание каждой такой моды расходуется определенная часть потока энергии, поступающего от источника накачки. Чем больше интенсивность данной моды, тем больше расход энергии на ее поддержание. Поскольку полная мощность источника накачки ограничена, обычно в результате конкуренции выживает всего одна наиболее эффективная мода..." [53].

А что в нашем случае может характеризовать эффективность той или иной цели?

Сразу напрашивается ответ — этим чем-то может быть процессорное время, выделяемое каждой цели для обработки текста, а также "близость" правил и фактов, до которых цель сумеет "дотянуться".

Исследуем значимость обоих факторов. Понятно, что если алгоритм поиска правил и фактов не эффективен, то можно веками наблюдать как яблоко падает с дерева и не видеть закона, объясняющего происходящее. Тем более, что в случае наличия многопроцессорности (у каждой цели свой процессор, каждая цель — это и есть процессор) и параллельности выполнения, процессорное время уже навряд ли может быть характеристикой эффективности реализации той или иной цели. Подобная система параллельности выполнения имеет место быть при работе головного мозга. Тот процесс, с которым в данный момент мы ассоциируем свое "я", нами называется "сознанием", но вое остальные процессы на это время никуда не исчезают, они также развиваются, правда, на т.н. подсознательном уровне. (Сознание в данной модели рассматривается как доминирующий информационный процесс самообучающейся системы). Получается, что в случае параллельности выполнения, факт активизации той или иной цели не может являться ресурсом, который надо делить, грубо говоря, "право на жизнь имеет каждая мысль". А раз так, то тогда из лежащих на поверхности характеристик процессов определяющими становятся:

- наличие в системе соответствующих правил и фактов;

- "близость" правил и фактов к данной цели. "Близость" в искривленном" пространстве правил определяется в первую очередь эффективностью примененного в системе поискового алгоритма, который и искривляет пространство правил и фактов, стараясь сделать его "удобным" для каждой из существующих целей. Проанализируем сказанное. Наличие в системе необходимых для реализации цели правил и фактов зависит;

- от их действительного наличия, что связано с входным потоком данных и способностью системы воспринимать и обрабатывать этот поток;

Психология bookap

- от приоритетности целей. Вполне возможно, что наиболее значимые цели, например безопасность системы, в интерпретирующем себя тексте расположены "наиболее близко" к значимому для системы потоку входных данных;

- от возможности одной цели использовать результаты другой цели, рассматривая ее в качестве подцели (дерево целей), что позволит при минимуме активности получить максимум результата "чужими руками". Для этого используемая подцель должна успеть превратиться в правило, т.е. реализоваться.

Подведем итог.

Психология bookap

Предложенная модель, которую в дальнейшем будем называть ЦПФ-модель (цель-правило-факт), включает в себя множество целей, правил и фактов. Правила, т.е. формализованные знания, могут рождаться в системе, путем превращения цели в правило, но могут и погибать в случае не соответствия другим правилам. По сути дела мы имеем прообраз самозарождающихся и саморазрушающихся структур (СР-сети), в которой формальные нейроны, рождаются и умирают.

Проанализируем основные характеристики обеих моделей на предмет поиска общего в них, на предмет их соответствия друг другу.

Результаты такого анализа сведены в таблицу соответствия рассмотренной выше формальной модели процесса целеобразования, базирующейся на языке Пролог, и модели, в основе которой лежит Р-сеть, Реализующая только принцип гибели нейронов без рождения (Табл. 4.1).

Обучение на модели Р-сети предполагает исходную избыточность с последующим избавлением от нее в процессе обучения, типа создания скульптором из глыбы мрамора крохотной статуэтки. Человеческий мозг состоит из не менее 100 * 10 нейронов, каждый из которых являясь неповторимым, подобно снежинке, и имеет до 60 * 10 связей. Таким образом 11 потенциальная информационная емкость составляет не менее 60 * 10 микропрограмм.

Таблица 4.1. Соответствия основных понятий ЦПФ-модели и Р-сети.

ЦПФ-модель процесса целеобразованияР-сеть
правилолокализованный обученный участок Р-сети
цельлокализованный необученный участок Р-сети (хаос)
фактлокализованный разрушенный участок Р-сети (только входные данные)

Вернемся к исследованию работы ЦПФ-модели, к обоснованию и определению алгоритма ее функционирования. После решения этой задачи можно будет перейти к ее макетной реализации.

Предлагается следующее описание процесса функционирования ЦПФИ модели (рис. 4.3). И

Рис. 4.3. Схема функционирования ЦПФ-модели в режиме самообучения.

Входные данные через устройства ввода информации самообучающейся системы поступают в "память-распределитель", которая на первом этапе представляет собой необученный участок Р-сети, т.е. является вопросом Вообще, любой несбалансированный (необученный) участок памяти является вопросом, ищущим ответа.

Можно выдвинуть и более сильное утверждение — любой хаос является вопросом! До тех пор пока информационная система не найдет какую-либо интерпретацию бушующему вокруг нее хаосу, этот хаос будет оставаться вопросом, целью, требующей ее достижения. Хаос — это приманка для любопытствующих, это приманка для исследователей, для научных работников. Хаос — это вечная криптограмма, притягивающая к себе уже проинтерпретированные части схемы.

Входные данные, пройдя распределитель, поступают на вход/выход произвольных участков функциональной памяти, т.е. память распределитель ретранслирует обучающую выборку внешней среды. Функциональные участки выбираются произвольным образом в силу того, что. сама память-распределитель необучена. Выходные данные с функциональных участков поступают обратно в память-распределитель, но уже в качестве требуемого результата, т.е. функциональная память становится учителем, хотя сама еще необучена. Однако она способна обучать тому, как надо распределять обучающую выборку внешней среды. Она способна показать, где должны быть расположены те самые дорожки на газонах. Это возможно потому, что функциональных участков много и какой-нибудь из них обязательно будет близок к правильному ответу. Под действием обучающей выборки память-распределитель превращается из вопроса в правило, согласно которого осуществляется распределение входной информации по всей самообучающейся системе. После чего уже начинается целенаправленная трансляция обучающей выборки на участки функциональной памяти. Таким образом, какие-то участки функциональной памяти становятся ответственными за обработку "сильных" сигналов, какие-то — "слабых". Одни участки памяти решают логические задачи, другие заботятся о том, чтобы "обед был подан вовремя". В системе затверждается "распределение труда", которое до гибели системы никогда не может стать окончательным в силу того, что входные данные обладают большим многообразием чем возможности любой ограниченной в пространстве и времени самообучаемой системы.

Психология bookap

Что интересно, по близкому сценарию предполагается работа биохимического компьютера Адлемана [73]. Суть:

1. Реальные объекты отображаются в соответствующий набор произвольных последовательностей из нуклеотидов.

2. С учетом требований модели, используя соответствующий "клей", напускается процесс склеивания цепочек нуклеотидов. Для размножения Цепочек используется метод Polymerase Chain Reaction, позволяющий синтезировать миллионы копий определенной последовательности по нескольким первым и последним нуклеотидам. В результате в "бульоне" формируется все множество возможных решений задачи. Осталось отобрать то, которое удовлетворяет ограничениям.

Психология bookap

3. Известно, что под действием электрического тока молекулы различной длины двигаются с различной скоростью. Используя этот факт, из множества возможных решений отбираются те решения, которые соответствуют молекулам определенной длины.

Грубо говоря, работа подобного компьютера на третьем этапе напоминает работу золотоискателя, который вымывает золото из груды песка.

Возможно, что аналогичным образом осуществляет поиск ключа и сам природа, используя биосферу в качестве бульона, а людей в качестве нуклеотидов.

Психология bookap

Понятно, что уже сегодня при наличии в лабораториях биохимических компьютеров говорить о надежной криптографии, ориентирующейся на NP-полные алгоритмы бессмысленно. Для решения криптоаналитической задачи на подобного рода компьютерах длина ключа практически не имеет значения. Таким образом, классическая вычислительная криптография с появлением подобных средств приблизилась к своей могиле, куда ее в ближайшее время и уложат. Но останутся продолжатели ее дела: биохимический компьютер Адлемана компьютерная стеганография.

Медленно, но верно человек в своих исследованиях и разработках удобном для себя масштабе времени поднялся до принципов, применяемых природой в эволюционных процессах, в общем виде решающих задачу

криптоанализа — поиска оптимальной формы жизни, и возможно поставил точку в развитии собственной классической криптографии.

Теперь попробуем перенести сказанное в логику работы нашей модели.

Через W, обозначим вопрос, заключенный в i участке памяти, т.е. W, — это ?:-F1F,,...Fk.

Ответить на этот вопрос можно либо путем поиска доказательств, т.е. путем перебора известных правил и фактов, либо попробовать упростить сам вопрос выполнить следующее:

Психология bookap

1) подставить в левую часть интересующий факт;

2) проверить истинность полученного правила, если результат верен перейти к п.5, иначе к п.З;

3) устранить из правой части вопроса наиболее "мешающий" факт (уничтожить мешающий элемент), т.е. упростить вопрос (чаще всего этим мешающим фактом является вновь поступивший);

Психология bookap

4) если вопрос еще существует, то перейти к п.2, иначе завершить работу по данной цели;

5) зафиксировать данный вопрос в виде правила и завершить работу. В том случае, если процесс обучения завершен не удачно, т.е. вопрос участок памяти) полностью уничтожен, начнется переобучение памяти-распределителя до тех пор, пока управление не будет передано на другой участок памяти.

В многопроцессорной системе обученная память-распределитель транслирует обучающую выборку сразу на несколько участков функциональной памяти. Образно говоря, входные данные, попав в систему, копируются в количестве достаточном для удовлетворения всех целей, "проглатываются" этими целями, встраиваются, превращая цель в правило, или отвергаются, не найдя себе места.

Психология bookap

Сточки зрения самообучаемой системы, реализованной на принципе избыточности (можно считать, что природа поиск решения практически всех своих проблемы строит на этом принципе), придти к пониманию чего-либо, используя поиск доказательства через полный перебор вариантов, не всегда возможно в условиях ограниченного времени. Полный перебор всегда слишком длителен и утомителен и вряд ли может способствовать выживанию системы в тяжелых условиях внешней среды, где время нужной реакции во многом определяет способности системы по выживанию.

Не всегда у системы есть время для того, чтобы гоняться за "рыбой любимого сорта и любимого размера".

Надо дать рыбе возможность самой приплыть в нужное время в нужное место.

Психология bookap

В этом случае задача заключается только в нахождении соответствующего знания в самом себе. А это знание, с той или иной степенью точности всегда имеет место быть (в силу огромной избыточности природы).

Сказанное выше, пока еще рано применять к современным техническим системам, в которых каждый элемент на счету. Но вот что касается живой природы, то она скорее всего строит свои процессы познания именно отталкиваясь от избыточности.

В предложенном алгоритме явно просматривается стремление самообучающейся системы к минимальности, т.е. к избавлению от бесполезных (лишних) аксиом, фактов, правил вывода.

ЦПФ-модель позволяет дать объяснение так называемому интуитивному знанию, когда человек мгновенно приходит к пониманию чего-либо, а на логическое обоснование объяснения уходят годы и годы, так как логическое обоснование требует осознания процессов, в том числе неосознанных ранее, которые и позволили получить результат.

Вернемся к формальному описанию модели.

Психология bookap

Проведем условное разделение нашей программы (модели) на два блока в соответствии со схемой рис.4.3.

Первый блок реализует работу памяти-распределителя, назовем его блоком распределения, а второй — функциональной памяти -функциональный блок. Обозначим через W — вопрос;

Р — правило;

Психология bookap

F — факт;

Введем следующие операции (функции):

Z = Prav (X, Y);

Z = Wopr (X);

Z = Delp (X, Y). F = Delf (P);

где

"Prav()" — функция, в ходе выполнения которой значение первого аргумента становится левой частью значения второго аргумента. Выходом является правило. Данная операция предназначена для превращения вопроса в правило, например P=Prav (F, W).

"Wopr()" — функция, осуществляющая поиск для аргумента в тексте программы его отрицания. В случае нахождения происходит уничтожение самого левого факта в значении аргумента. Выходом является вопрос. Данная операция предназначена для уничтожения взаимоисключающих правил и превращения их в вопрос, например

W = Wopr (P).

"Delp()" — функция, реализующая исключение из значения первого аргумента подстроки, совпадающей созначением второго аргумента. Выходом является вопрос. Данная операция применяется для установления истинности правила, путем исключения "мешающих" фактов, например P = Delp (P, F).

"Delf()" — функция для выделение факта, который больше других мешает стать значению аргумента истинным, например

Психология bookap

F = Delf (P). Выходом является факт

"Тгрг ()" — функция, которая возвращает 0, если аргумент в рамках данной модели является ложным правилом и 1 — если правило истинно или аргумент не является правилом, в соответствии с определением синтаксиса правила, например

I = Trpr (P). Выходом является целочисленное значение: 0 или 1.

Тогда алгоритм работы системы по конкретной цели W при поступлении нового факта F может быть записан следующим образом (использован синтаксис языка программирования СИ):

/* алгоритм работы системы по конкретной цели*/

 Р = Prav (F, W);
while (Trpr (P) = 0)
{ f = Delf (P);
P = Delp (P, f);
}
 

/* Алгоритм 4.1. Обработка факта по цели.*/

Цикл завершится, если:

а) правило сохранится, т.е. станет истинным (стабильность) Тгрг (Р) =1;

б) от правила не останется правой части и правило превратится в факт (порядок из хаоса)

Тгрг (Р) =1;

в) от правила не останется левой части и правило опять превратится в вопрос (хаос из порядка)

Тгрг (Р) =1;.

Психология bookap

В случае системы, которая способна работать параллельно, приведенный алгоритм отрабатывает одновременно по каждой возможной цели до тех пор, пока одна из них не превратится в правило или входные данные "потеряются", т.е. активизированные ими цели вернутся в свое первоначальное состояние.

Возврат всех целей в первоначальное состояние говорит о том, что данную входную информацию система не способна "заметить" (осмыслить). Неспособность системы в определенном состоянии осознавать происходящее обозначим как проблему невидимости.