ИНСТРУМЕНТЫ ИЗОБРЕТАТЕЛЯ

Давайте детальнее познакомимся с таблицей типовых приемов и самими этими приемами.

Создание подобных таблиц — работа чрезвычайно трудоемкая. К сожалению, нельзя поступить так: подряд анализировать изобретения, отбирать наиболее часто встречающиеся решения и вписывать их в таблицу. Авторские свидетельства и патенты довольно часто выдаются на весьма тривиальные решения, и составленная на их основе таблица давала бы, как правило, слабые решения даже в том случае, если весь массив анализируемых изобретений содержит только сильные решения. Приемы, которые были оригинальными и сильными 5-10-20 лет назад, могут оказаться слабыми при решении новых задач.

Поэтому при составлении таблицы для каждой клеточки приходится определять авангардную отрасль техники, в которой данный тип противоречий устраняется наиболее сильными и перспективными приемами. Так, для противоречий типа «вес-продолжительность действия», «вес — скорость», «вес — прочность», «вес — надежность» и т. д. наиболее подходящие приемы содержатся в изобретениях по авиационной технике. Противоречия, связанные с необходимостью повышать точность, эффективнее всего устраняются приемами, присущими изобретениям в области оборудования для физических экспериментов.

Таблица, построенная на приемах, взятых из таких ведущих отраслей техники, будет помогать находить сильные решения для обычных изобретательских задач. Чтобы таблица годилась и для задач, возникающих в ведущих отраслях, она должна дополнительно вобрать в себя и новейшие приемы, которые еще только входят в изобретательскую практику. Эти приемы чаще встречаются не в тех «благополучных» изобретениях, на которые выданы авторские свидетельства, ав заявках, отклоненных из-за «неосуществимости», «нереальности».

АРИЗ-65 имел таблицу, составленную на основе анализа пяти тысяч изобретений, относящихся к сорока трем патентным классам. В АРИЗ-71 таблица значительно более подробна. При ее составлении проанализировано свыше сорока тысяч изобретений. Не все клетки таблицы заполнены, тем не менее она охватывает около полутора тысяч типов технических противоречий, указывая для каждого типа вероятные приемы решения.

Необходимо подчеркнуть, что приемы устранения технических противоречий, рекомендуемые таблицей, сформулированы в общем виде. Они подобны готовому платью: их надо подгонять, учитывая индивидуальные особенности задачи. Если, например, таблица рекомендует прием 1 («Дробление»), это лишь означает, что решение как-то связано с разделением объекта. Таблица отнюдь не избавляет изобретателя от необходимости думать, она лишь направляет мысль по наиболее перспективным путям.

Совместимо ли использование типовых приемов с творческим характером изобретательского процесса? Да, совместимо! Более того, все современные изобретатели пользуются типовыми приемами, порой и не подозревая об этом.

Попытки составления списков приемов предпринимались с начала XX века. Но списки эти не были достаточно полными, так как их составляли по случайным наблюдениям и разрозненным материалам. Для правильного составления и периодического обновления списков приемов необходимо систематически исследовать патентную информацию, анализировать десятки тысяч изобретений по большинству патентных классов. Сейчас эта работа ведется регулярно, и каждая модификация АРИЗ снабжает уточненным и дополненным перечнем приемов.

В творческой мастерской изобретателя приемы играют роль набора инструментов, и, чтобы пользоваться ими, нужны определенные навыки. В простейшем случае изобретатель, просматривая перечень приемов, ищет подсказку по аналогии. Зто способ медленный и не очень эффективный. Иначе обстоит дело, когда решение задачи ведется по АРИЗ: таблица применения приемов указывает наиболее подходящее решение для данной задачи. На первых этапах освоения АРИЗ изобретатель применяет приемы подряд, на более поздних — по таблице. Однако во всех случаях надо знать типовые приемы и уметь их использовать.

Перечень типовых приемов — это своего рода настольный справочник изобретателя, но справочник особого рода: изобретатель должен рассматривать его как основу, которую необходимо самостоятельно пополнять по новым техническим и патентным публикациям,

* * *

Рассмотрим типовые приемы устранения технических противоречий.

1. Принцип дробления

а) Разделить объект на независимые части.

б) Выполнить объект разборным.

в) Увеличить степень дробления (измельчения) объекта,

Примеры. Патент США № 2859791. Пневматическая шина, состоящая из двенадцати независимых секций1.

Разделение шины осуществляется, чтобы повысить надежность. Но это далеко не единственный повод для использования столь сильного приема. Дробление — одна из ведущих тенденций в развитии современной техники.

Еще несколько примеров.

Авторское свидетельство № 168195. Ковш одноковшового экскаватора со сплошной полукруглой режущей кромкой, отличающийся тем, что для обеспечении быстрой и удобной замены сплошной режущей кромки последняя выполнена из отдельных съемных секций.

Авторское свидетельство № 184219. Способ непрерывного разрушения горных пород зарядами ВВ, отличающийся тем, что с целью получения мелких фракций непрерывное разрушение поверхностного слоя производят микрозарядами.

2. Принцип вынесения

Отделить от объекта «мешающую» часть («мешающее» свойство) или, наоборот, выделить единственно нужную часть (нужное свойство).


1 Здесь, как и в других примерах, я стремился к максимальной наглядности. Пусть читателя не смущает, что некоторые принципы проиллюстрированы «мелкими» или «смешными» идеями. Важна суть.


ris13.jpg

Рис. 9. Принцип вынесения: раньше горноспасатель носил на спине ранец с холодильным устройством; теперь оно помещено в отдельном контейнере.

Примеры. Авторское свидетельство № 153533. Устройство для защиты от рентгеновских лучей, отличающееся тем, что с целью защиты от ионизирующего излучения головы, плечевого пояса, позвоночника, спинного мозга и гонад пациента при флюорографии, например, грудной клетки оно снабжено защитными барьерами и вертикальным, соответствующим позвоночнику стержнем, изготовленным из материала, не пропускающего рентгеновские лучи.

Целесообразность этой идеи очевидна.

Изобретение выделяет наиболее вредную часть потока и блокирует ее. Заявка подана в 1962 году, между тем это простое и нужное изобретение могло быть сделано значительно раньше. Мы привыкаем рассматривать многие объекты как набор традиционных и неотъемлемых друг от друга частей. В набор вертолета, например, входят и баки с горючим. Действительно обычный вертолет вынужден возить горючее. Однако в тех случаях, когда вертолет курсирует по определенному маршруту, горючее можно оставить на земле. На электровертолете бензиновый двигатель заменен электромотором, а баков вообще нет.

В авторском свидетельстве № 257301 «бак» есть, но он отделен от человека (рис. 9).

Еще один пример. Столкновение самолетов с птицами вызывают иногда тяжелые катастрофы. В США запатентованы самые различные способы отпугивания птиц от аэродромов (механические чучела, распыление нафталина и т. д.). Наилучшим оказалось громкое воспроизведение крика перепуганных птиц, записанного на магнитофонную ленту.

Отделить птичий крик от птиц — решение, конечно, необычное, но характерное для принципа вынесения.

3. Принцип местного качества

а) Перейти от однородной структуры объекта (или внешней среды, внешнего воздействия) к неоднородной.

б) Разные части объекта должны иметь разные функции.

в) Каждая часть объекта должна находиться в условиях, наиболее соответствующих ее работе.

Примеры. Авторское свидетельство № 256708. Способ подавления пыли в горных выработках, отличающийся тем, что с целью предотвращения распространения тумана по выработкам и сноса его с источника пыле-образования вентиляционным потоком подавление пыли производят одновременно тонкодиспергированной и гру-бодисперсной водой, причем вокруг конуса тонкодиспергированной воды создают пленку из грубодисперсной воды.

Авторское свидетельство № 280328. Способ сушки зерна риса, отличающийся тем, что с целью уменьшения образования трещиноватых зерен рис перед сушкой разделяют по крупности на фракции, которые сушат раздельно с дифференцированными режимами.

Принцип местного качества отчетливо отражается в историческом развитии многих машин: они постепенно дробились и для каждой части создавались наиболее благоприятные местные условия.

Первоначально паровой двигатель представлял собой цилиндр, выполнявший одновременно функции парового котла и конденсатора. Вода заливалась непосредственно в цилиндр. Огонь обогревал цилиндр, вода закипала, пар поднимал поршень, после чего жаровню с огнем убирали, а цилиндр поливали холодной водой. Пар конденсировался, и поршень под действием атмосферного давления шел вниз.

Позднее изобретатели догадались отделить паровой котел от цилиндра двигателя. Это позволило существенно сократить расход топлива.

Однако отработанный пар по-прежнему конденсировался в самом цилиндре, что вызывало огромные тепловые потери. Нужно было сделать следующий шаг — отделить от цилиндра конденсатор. Эту идею выдвинул и осуществил Джемс Уатт. Вот что он рассказывает:

«После того как я всячески обдумывал вопрос, я пришел к твердому заключению: для того чтобы иметь совершенную паровую машину, необходимо, чтобы цилиндр всегда был так же горяч, как и входящий в него пар. Однако конденсация пара для образования вакуума должна происходить при температуре не выше 30 градусов…

Это было возле Глазго, я вышел на прогулку около полудня. Был прекрасный день.»i проходил мимо старой прачечной, думая о машине, и подошел к дому Герда, когда мне пришла в голову мысль, что пар ведь упругое тело и легко устремляется в пустоту. Если установить связь между цилиндром и резервуаром с разреженным воздухом, то пар устремится туда и цилиндр не надо будет охлаждать. Я не дошел еще до Гофхауза, как все дело было кончено в моем уме!»

4. Принцип асимметрии

Перейти от симметричной формы объекта к асимметричной. Машины рождаются симметричными. Это их традиционная форма. Поэтому многие задачи, трудные по отношению к симметричным объектам, легко решаются нарушением симметрии.

Примеры. Тиски со смещенными губами. В отличие от обычных, они позволяют зажимать в вертикальном положении длинные заготовки.

Фары автомобиля должны работать в разных условиях: правая должна светить ярко и далеко, а левая — так, чтобы не слепить водителей встречных машин. Требования разные, а устанавливались фары всегда одинаково. Лишь несколько лет назад возникла идея несимметричной установки фар: левая освещает дорогу на расстоянии до 25 метров, а правая — значительно дальше.

Патент США № 3435875. Асимметричная пневматическая шина имеет одну боковину повышенной прочности и сопротивляемости ударам о бордюрный камень тротуара.


ris14.jpg

Рис. 10. Принцип асимметрии: электроды в дуговой печи сдвинуты в сторону, у загрузочного окна образовалось свободное пространство, что позволяет загружать шихту непрерывно.



ris15.jpg

Рис. 11. Принцип объединения: раньше приходилось останавливать роторный экскаватор, чтобы разогреть мерзлый грунт; теперь форсунки установлены непосредственно на роторе.


Авторское свидетельство № 242325. Дуговая электропечь для плавки чугуна с боковой загрузкой твердой шихты, отдичающаяся тем, что с целью создания непрерывности процесса плавления ее подина выполнена асимметрично вогнутой, расширенной к загрузочному окну (рис. 10).

5. Принцип объединения

а) Соединить однородные или предназначенные для смежных операций объекты,

б) Объединить во времени однородные или смежные операции.

Примеры. Авторское свидетельство № 235547. Рабочее оборудование роторного экскаватора, включающее ротор и стрелу, отличающееся тем, что с целью уменьшения усилия резания оно выполнено с устройством для разогрева мерзлого грунта, имеющим форсунки, смонтированные, например, на секторах по обоим торцам ротора (рис. 11).

Авторское свидетельство № 134155. Спасательное водолазное устройство для вывода на поверхность людей, оказавшихся в воздушных мешках отсеков затонувших судов, с применением шлем-масок, отличающееся тем, что с целью повышения эффективности спасательных операций, производимых водолазом, оно выполнено в виде одной или двух шлем-масок, снабженных шлангами и арматурой для присоединения к штуцерному крану, вмонтированному в водолазный скафандр, от которого производится регулирование подачи воздуха в шлем-маски (рис. 12).


ris16.jpg

Рис. 12. Еще одно применение принципа объединения.


6. Принцип универсальности

Объект выполняет несколько разных функций, благодаря чему отпадает необходимость в других объектах.

Примеры. В Японии рассматривается возможность постройки танкера, оборудованного нефтеперегонной установкой. Смысл проекта — совмещение во времени процессов транспортировки и переработки нефти.

Авторское свидетельство № 160100. Способ траспор-тирования материала, например табачных листьев, к сушильным установкам с помощью водяного потока в гидротранспортере, отличающийся тем, что с целью одновременного осуществления промывки табачных листьев и фиксации их цвета используют воду, нагретую до 80-85°С.

Авторское свидетельство № 264466. Элемент памяти на тонкой цилиндрической пленке, нанесенной на диэлектрическую подложку, отличающийся тем, что с целью упрощения элемента сама пленка служит шиной записи-считывания.


ris17.jpg

7. Принцип «матрешки»

а) Один объект размещен внутри другого объекта, который, в свою очередь, находится внутри третьего и т. д.

б) Один объект проходит сквозь полость в другом объекте.

Примеры. Авторское свидетельство № 186781. Ультразвуковой концентратор упругих колебаний, состоящий из скрепленных между собой полуволновых отрезков, отличающийся тем, что с целью уменьшения длины концентратора и увеличения его устойчивости полуволновые отрезки выполнены в виде полых конусов, вставленных один в другой (рис. 13).

Авторское свидетельство № 110596. Способ хранения и транспортировки разнородных по вязкости нефтепродуктов в корпусе плавучей емкости, отличающийся тем, что хранение их с целью уменьшения потерь тепла высоковязких нефтепродуктов производят в отсеках емкости, расположенных внутри отсеков, заполненных невязкими сортами нефтепродуктов.

Авторское свидетельство № 272705. Устройство для внесения удобрений в почву, включающее бункер и право-и левосторонние дозирующие шнеки, отличающееся тем, что с целью регулирования рабочей ширины захвата каждый дозирующий шнек выполнен из двух ввинченных одна в другую секций (рис. 14).

8. Принцип антивеса

а) Компенсировать вес объекта соединением с другими объектами, обладающими подъемной силой.

Рис. 13. Принцип «матрешки»: компактный ультразвуковой концентратор; / и 2 — полые конусы.

1 Пусть читателя не смущают «несерьезные» названия некоторых приемов. Принцип «матрешки» можно назвать вполне серьезно принципом интегрирующей концентрации. Однако простые и образные названия значительно быстрее и лучше запоминаются.

б) Компенсировать вес объекта взаимодействием со средой (за счет аэро-, гидродинамических н других сил). Примеры. Авторское свидетельство № 187700. Способ спуска в скважину и извлечения из нее стреляющей и взрывной аппа-Рис. 14. Еще одна «матрешка»: РаТуры, отличающий-ширину дозирующего шиека регу- с я тем, что с целью уде-лируют, ввинчивая одну секцию в шевления И упрощения другую. «прострелочных и взрывных работ спуск стреляющей и взрывной аппаратуры, производят свободно под действием собственного веса, а подъем к устью скважины -с помощью встроенного в корпус реактивного двигателя.

При создании сверхмощных турбогенераторов возникла сложная задача: как уменьшить давление ротора на подшипники. Решение нашли в том, что над турбогенератором установили сильный электромагнит, компенсирующий давление ротора на подшипники.

Иногда приходится решать обратную задачу: компенсировать недостаток веса. При создании и эксплуатации шахтных электровозов возникает явное техническое противоречие: для увеличения тяги нужно утяжелять электровоз, а для уменьшения его мертвого веса следует делать электровоз возможно более легким. Группа сотрудников Ленинградского горного института разработала и успешно применила простое устройство, позволяющее снять это техническое противоречие и в полтора раза увеличить производительность рудничных электровозов: в ведущих колесах монтируется мощный электромагнит; создается магнитное поле, охватывающее колеса и рельсы; сила сцепления резко возрастает, а вес электровоза может быть снижен.

9. Принцип предварительного напряжения Заранее придать объекту напряжения, противоположные недопустимым или нежелательным рабочим напряжениям.


ris18.jpg

Примеры. Авторское свидетельство № 84355. Заготовку турбинного диска устанавливают на вращающийся поддон. Нагретая заготовка по мере охлаждения сжимается. Но центробежные силы (пока заготовка не потеряла пластичности) как бы отштамповывают заготовку. Когда же деталь остынет, в ней появятся сжимающие усилия.

На этом принципе основана вся технология предварительного напряжения железобетона: чтобы бетон лучше работал на растяжение, его предварительно укорачивают. Это едва ли не единственный случай, когда строительная техника использует более передовые методы, нежели машиностроение. Предварительно напряженные конструкции применяются в машиностроении еще очень редко, между тем использование этого приема могло бы дать колоссальные результаты.

Как, например, сделать вал прочнее, не увеличивая его наружный диаметр? Решение этой задачи показано на рис. 15. Вал составлен из вставленных одна в другую труб, предварительно закрученных на определенные расчетом углы. Иными словами, вал предварительно получает деформацию, противоположную по знаку той деформации, какую он получает во время работы. Крутящий момент должен сначала снять эту предварительную деформацию, только после этого начнется деформация вала в «нормальном» направлении. Составной вал весит вдвое меньше равного ему по прочности обычного монолитного.

10. Принцип предварительного исполнения

а) Заранее выполнить требуемое изменение объекта (полностью или хотя бы частично).

б) Заранее расставить объекты так, чтобы они могли вступить в Действие с наиболее удобного места и без затрат времени на их доставку.

Примеры. Авторское свидетельство № 61056. Черенки многих плодово-ягодных и других культур, посаженные в почву, не укореняются вследствие недостатка питательных веществ в черенке. По данному изобретению предлагается создавать запас питательных веществ заранее, насыщая перед посадкой черенки в ванне с питательной смесью

Авторское свидетельство № 162919. Способ снятия гипсовых повязок с помощью проволочной пилы, отличающийся тем, что с целью предубеждения травм и облегчения снятия повязки пилу помещают в предварительно смазанную подходящей смазкой трубку, выполненную, например, из полиэтилена, и заранее загипсовывают под повязку при ее наложении. Благодаря этому распиливать повязку можно от тела наружу - - без опасения задеть тело древесины до того, как дерево  срубили: красители поступают под кору дерева и разносятся соками по всему стволу.


ris19.jpg

Рис. 15. Принцип предварительного напряжения: Любопытный случай использо- трубы составного вала ванияЭТОГО же ПОИНЦИПа — ОКра-заранее скручены в направлении, противоположном рабочей деформации.

11. Принцип «заранее подложенной подушки» Компенсировать относительно невысокую надежность объекта заранее подготовленными аварийными средствами.

Примеры. Авторское свидетельство № 264626. Способ снижения токсического действия химических соединений с помощью присадок, отличающийся тем, что с целью уменьшения опасности отравления химическими веществами, а также продуктами их превращений в организме присадки добавляют непосредственно в исходные токсичные химические соединения при их изготовлении.

Авторское свидетельство № 297361. Способ предотвращения распространения лесного пожара посредством создания заградительных полос из растений, отличающийся тем, что с целью придания огнестойкости растениям, образующим заградительную полосу, в почву вносят биологические усваиваемые или химические элементы, тормозящие процесс их воспламенения.

Патент США № 2879821: жесткий металлический диск, заранее расположенный внутри автомобильной шипы и позволяющий продолжать движение на спущенной шине без повреждения покрышки.

Принцип «заранее подложенной подушки» можно использовать не только для повышения надежности. Вот характерный пример. В связи с тем что в американских библиотеках часто пропадают книги, изобретатель Эмануэль Трикилис предложил прятать в переплеты кусо чек намагниченного металла. При выдаче книги библиотекарь размагничивает этот металлический вкладыш, проталкивая книгу под специальной электрической спиралью. Если посетитель попытается уйти, взяв незарегистрированную книгу, то спрятанный в двери прибор среагирует на магнитный вкладыш в переплете.

Горноальпийская спасательная станция в Швейцарии применила аналогичный метод для быстрого обнаружения людей, попавших в снежную лавину. Теперь лыжник или житель местности, в которой часты лавины, носит небольшой магнит. При несчастном случае этот магнит помогает легко обнаружить пострадавшего с помощью искателя даже под трехметровым покровом снега.

12. Принцип эквипотенциальности

Изменить условия работы так, чтобы не приходилось поднимать или опускать объект. Примеры. Авторское свидетельство № 264679. Предложено устройство для перемещения пресс-форм в зоне пресса. Устройство выполнено в виде прикрепленной к столу пресса приставки с рольгангом.

Авторское свидетельство № 110661. Контейнеровоз, в котором груз не поднимается в кузов, а только приподнимается гидроприводом и устанавливается на опорную скобу. Такая машина работает без крана и перевозит значительно более высокие контейнеры.

13. Принцип «наоборот»

а) Вместо действия, диктуемого условиями задачи, осуществить обратное действие (например, не охлаждать объект, а нагревать).

б) Сделать движущуюся часть объекта (или внешней среды) неподвижной, а неподвижную — движущейся.

в) Перевернуть объект «вверх ногами». Примеры. Авторское свидетельство № 184649. Способ вибрационной очистки металлоизделий в абразивной среде, отличающийся тем, что с целью упрощения процесса очистки движения вибрации сообщают обрабатываемой детали.



ris20.jpg


Рис. 1С Принцип «наоборот»: в отличие от обычного способа заливки, движется форма, а поступающий в нее металл остается неподвижным.

Авторское свидетельство № 109942. Это изобретение решает важную проблему отливки крупногабаритных тонкостенных деталей. При отливке таких деталей желательно, чтобы металл поступал в форму сверху и затвердение шло снизу вверх. Но лить металл в форму («дождевой» способ) допустимо с высоты не более пятнадцати сантиметров, иначе металл сгорит или пропитается газами. А как быть, если форма имеет высоту два-три метра? Если подавать металл снизу, то первые порции его затвердеют, не успев подняться к верхней части формы. Изобретатель решил эту задачу просто и изящно: металл идет по трубкам, опущенным ко дну литейной формы. По мере заполнения форма движется вниз, и, таким образом, каждая порция металла подается именно туда, где она должна застыть (рис. 16). Литье всегда осуществлялось так, что двигался металл, а форма была неподвижной. Здесь все наоборот: движется форма, а залитый в нее металл остается неподвижным. Это позволило «совместить несовместимое»: плавность заполнения формы и затвердевание металла снизу вверх, как при литье «дождевым» способом. 14. Принцип сфероидальности

а) Перейти от прямолинейных частей объекта к криволинейным, от плоских поверхностей к сферическим, от частей, выполненных в виде куба или параллелепипеда, к шаровым конструкциям.

б) Использовать ролики, шарики, спирали.

в) Перейти к вращательному движению, использовать центробежную силу.

Примеры. Патент ФРГ № 1085073. Устройство для вварки труб в трубную решетку, в котором электродами служат катящиеся шарики.

Авторское свидетельство № 262045. Исполнительный орган проходческого комбайна, включающий породораз-рушающие электроды, отличающийся тем, что с целью повышения эффективности разрушения крепких горных пород породоразрушающие электроды выполнены в виде свободно вращающихся клиновых роликов, установленных на изолирующей оси.

Авторское свидетельство № 260874. Способ отделения нитей корда от резины, например, в каркасе изношенных покрышек, включающий выдержку покрышки в углеводородах, обработку ее высоконапорными струями жидкости, механическое расчесывание нитей и их обрезку, отличающийся тем, что с целью повышения производительности труда обработку полупокрышки ведут в процессе ее вращения со скоростью, ослабляющей связь между частицами резины.

15. Принцип динамичности

а) Характеристики объекта (или внешней среды) должны меняться так, чтобы быть оптимальными на каждом этапе работы.

б) Разделить объект на части, способные перемещаться относительно друг друга.

Примеры. Авторское свидетельство № 317390. Ласта плавательная резиновая, отличающаяся тем, что с целью обеспечения регулирования жесткости ее рабочей лопасти для различных по скорости и длительности плавания режимов она имеет внутренние продольные полости, весь объем которых заполнен инертной несжимаемой жидкостью, статическое давление которой, по необходимости, изменяется на берегу или под водой.

Авторское свидетельство № 161247. Транспортное судно, корпус которого имеет цилиндрическую форму, отличающееся тем, что с целью уменьшения осадки судна при полной загрузке его корпус выполнен из двух раскрывающихся, шарнирно сочлененных полуцилиндров.

Патент СССР № 174748. Автомобиль с шарнирно соединенными секциями рамы, которые могуг поворачиваться при помощи гидроцилиндров. Такой автомобиль обладает повышенной проходимостью.

Авторское свидетельство № 162580. Способ изготовления полых кабелей с каналами, образованными трубками, скрученными с токоведущими жилами, с предварительным заполнением трубок веществом, удаляемым из них после изготовления кабеля. Чтобы упростить технологию, в качестве заполняющего вещества применяют парафин, который после изготовления кабеля расплавляют и выливают из трубок.


ris21.jpg

Рис. 17. Принцип избыточного решения: чтобы подавать порошок по трубке 1 равномерно, его насыпают в воронку 2 с избытком; лишний порошок высыпается в бункер 3, а воронка всегда заполнена до краев. 16.

Принцип частичного или избыточного решения

Если трудно получить 100% требуемого эффекта, надо получить «чуть меньше» или «чуть больше». Задача при этом может существенно упроститься.

Примеры. Авторское свидетельство № 181897. Способ борьбы с градом, основанный на кристаллизации с помощью реагента (например, йодистого серебра) градового облака, отличающийся тем, что с целью резкого сокращения расхода реагента и средств его доставки осуществляют кристаллизацию не всего облака, а крупнокапельной (локальной) его части.

Авторское свидетельство № 262333. Устройство для дозирования металлических порошков, содержащее бункер с дозатором, отличающееся тем, что с целью обеспечения равномерной подачи порошка к дозатору бункер снабжен внутренней приемной воронкой и каналом с электромагнитным насосом для подачи (с избытком) порошка к воронке (рис. 17).

17. Принцип перехода в другое измерение а) Трудности, связанные с движением (или размещением) объекта по линии, устраняются, если объект приобретает возможность перемещаться в двух измерениях (то есть на плоскости). Соответственно, задачи, связанные с движением (или размещением) объектов в одной плоскости, устраняются при переходе к пространству трех измерений.

б) Многоэтажная компоновка объектов вместо одноэтажной.

в) Наклонить объект или положить его «набок».

г) Использовать обратную сторону данной площади.

д) Использовать оптические потоки, падающие на соседнюю площадь или на обратную сторону имеющейся площади.

Примеры. Авторское свидетельство № 150938. Полупроводниковый диод отличающийся тем, что с целью увеличения мощности диода в нем применен профилированный электронно-дырочный переход и профилированный омический контакт без увеличения периметра полупроводниковой пластины. Переход от плоского контакта к объемному позволяет при прежних габаритах диода получить большую площадь пластины полупроводника и, следовательно, большую мощность, снимаемую с электронно-дырочного перехода..

Известный советский изобретатель Д. Киселев, долгое время работавший над совершенствованием долота для бурения нефтяных скважин, рассказывает в своей книге «Поиски конструктора»: s

«В долоте также каждый подшипник обладает определенной грузоподъемностью, и если увеличить их число, дать меньшую нагрузку каждому, можно улучшить условия их работы, предотвратить износ. Именно по этому пути шла все время моя мысль в поисках различных схем размещения подшипников. Но мешали габариты долота, малое пространство, на котором я имел возможность располагать необходимое мне количество шариков и роликов. Теперь же я вдруг увидел решение, вот оно, рядом. На одном и том же участке поверхности можно разместить большее количество «элементов» подшипников в два яруса, как размещаются люди и вещи в купе пассажирских вагонов. Я даже рассмеялся: так просто было это решение, тщетно разыскиваемое много месяцев».

Авторское свидетельство № 180555. Способ механизации обмена вагонеток в горизонтальном проходческом забое, отличающийся тем, что с целью устранения подрыва кровли и устройства разъездов обмен груженых вагонеток на порожние производят посредством перенесения порожней вагонетки с возможным поворотом ее на угол в 90° над составом под погрузку.

Авторское свидетельство № 259449. Устройство для магнитографической дефектоскопии, отличающееся тем, что с целью повышения срока службы кольцевая магнитная лента выполнена с двусторонним магниточув-ствительным покрытием и изогнута в виде листа Мёбиуса.

Авторское свидетельство № 244783. Теплица для круглогодового выращивания овощных культур, отличающаяся тем, что с целью улучшения светового режима растений за счет использования солнечных лучей она снабжена вогнутым отражательным экраном, установленным поворотно с северной стороны теплицы.

18. Использование механических колебаний

а) Привести объект в колебательное движение.

б) Если такое движение уже совершается-увеличить его частоту (вплоть до ультразвуковой).

в) Использовать резонансную частоту.

г) Применить вместо механических вибраторов пьезовибраторы.

д) Использовать ультразвуковые колебания в сочетании с электромагнитными полями.

Примеры. Авторское свидетельство № 220380. Способ вибродуговой наплавки и сварки деталей под слоем флюса с низкочастотными колебаниями электрода, отличающийся тем, что с целью повышения качества наплавленного металла на низкочастотные колебания электрода накладывают высокочастотные ультразвуковые колебания порядка, например, 20 кгц

Авторское свидетельство № 307896. Способ безопилоч-ного резания древесины при помощи изменяющего свои геометрические размеры режущего инструмента, отличающийся тем, что с целью снижения усилия внедрения инструмента в древесину резание осуществляют инструментом, частота пульсации которого близка к собственной частоте колебаний перерезаемой древесины.

Патент США № 3239283. Трение покоя резко снижает чувствительность тонких приборов, мешает стрелкам, маятникам и другим подвижным частям легко поворачиваться в подшипниках. Чтобы избежать этого, подшипники заставляют вибрировать, и элементы прибора все время совершают осциллирующие движения относительно друг друга. В качестве источника вибрации обычно используют электромотор. При этом кинематика прибора существенно усложняется', а вес увеличивается. Амери-

канские изобретатели Джон Броз и Вильям Лаубендор-фер разработали конструкцию подшипника, в котором втулки выполняются из пьезоэлектрического материала, и с обеих сторон покрываются тонкой электропроводной фольгой. К фольге припаиваются электроды, по которым подводится переменный ток, создающий вибрацию.

Авторское свидетельство № 244272. Способ осаждения пыли с использованием магнитного поля, отличающийся тем, что… воздух подвергают одновременному воздействию акустического и магнитного полей.

19. Принцип периодического действия

а) Перейти от непрерывного действия к периодическому (импульсному).

б) Если действие уже осуществляется периодически- изменить периодичность.

в) Использовать паузы между импульсами для осуществления другого действия.

Примеры. Авторское свидетельство № 267772. Известен способ исследования процесса дуговой сварки с использованием дополнительного осветителя. Однако при дополнительном освещении наряду с улучшением видимости твердого и жидкого материала, находящегося в области дуги, ухудшается видимость плазменно-газовой фазы столба дуги (явное техническое противоречие!). Предложенный способ отличается тем, что яркость дополнительного осветителя периодически изменяют от нуля до величины, превышающей яркость дуги. Это позволяет совместить наблюдение как за самой дугой, так и за процессом плавления электрода и переноса металла.

Авторское свидетельство № 302622. Способ контроля исправности термопары путем подогрева ее и проверки наличия в цепи э. д. с, отличающийся тем, что с целью уменьшения времени контроля нагревают термопару периодическими импульсами тока, а в промежутки времени между импульсами проверяют наличие термо э д.с.

20. Принцип непрерывности полезного действия

а) Вести работу непрерывно (все части объекта должны все время работать с полной нагрузкой).

б) Устранить холостые и промежуточные ходы Примеры. Авторское свидетельство № 126440. Способ многоствольного бурения скважин двумя комплектами труб. При одновременном бурении двух-трех скважин

применяются ротор с несколькими стволами, включаемыми в работу независимо друг от друга, и два комплекта бурильных труб, поочередно поднимаемых и опускаемых в скважины для смены отработанных долот. Операции по смене долот совмещаются во времени с автоматическим бурением в одной из скважин.

Авторское свидетельство № 268926. Способ транспортировки сахара-сырца на судах, отличающийся тем, что с целью снижения стоимости транспортировки путем утилизации свободных пробегов используют танкеры, которые после разгрузки от нефтепродуктов или других жидких грузов, очистки и обработки моющими средствами загружают сахаром-сырцом.

21. Принцип проскока

Вести процесс или отдельные его этапы (например, вредные или опасные) на большой скорости.

Примеры. Авторское свидетельство № 241484. Способ скоростного нагрева металлических заготовок в потоке газа, отличающийся тем, что с целью повышения производительности и уменьшения обезуглероживания газ подают со скоростью не менее 200 м/сек, при сохранении потока постоянным на всем протяжении его контакта с заготовками.

Авторское свидетельство № 112889. При разгрузке палубного лесовоза его накреняют с помощью судна-крено-вателя. Чтобы в воду свалился весь лес, приходится создавать большой крен лесовоза, а это опасно. Предлагаемый способ состоит в том, что лесовоз быстро («рывком») накреняют на небольшой угол. Возникает динамическая нагрузка, и лес разгружается при небольшом угле крена.

Патент ФРГ № 1134821. Устройство для разрезания тонкостенных пластмассовых труб большого диаметра… Особенность устройства — нож рассекает трубу так быстро, что она не успевает деформироваться.

22. Принцип «обратить вред в пользу»

а) Использовать вредные факторы (в частности, вредное воздействие среды) для получения положительного эффекта.

б) Устранить вредный фактор за счет сложения с другим вредным фактором.

в) Усилить вредный фактор до такой степени, чтобы он перестал быть вредным.

Примеры, Член-корреспондент Академии наук

СССР П. Вологдин в статье «Путь ученого» («Ленинградский альманах», 1953, № 5) писал, что еще в -двадцатых годах он задался целью применить токи высокой частоты для нагрева металла. Опыты показали, что металл нагревается лишь с поверхности. Ток высокой частоты никак не удавалось «загнать» в глубь заготовки, и опыты прекратили. Впоследствии Вологдин не раз сожалел, что не использовал этот «отрицательный эффект»: промышленность могла бы получить метод высокочастотной закалки стальных деталей на много лет раньше, чем он был предложен в действительности.

По-иному сложилась судьба дру- Рис. \8 Принцип «об-гого выдающегося изобретения — ратить вред в пользу», электроискровой обработки металла.

Б. Р. Лазаренко и И. Н. Лазаренко работали над проблемой борьбы с электроэрозией металлов. Электрический ток «разъедал» металл в месте соприкосновения контактов реле, и с этим ничего не удавалось сделать. Были испробованы твердые и сверхтвердые сплавы — и все безрезультатно. Исследователи пытались помещать контакты в различные жидкости, но разрушение шло еще интенсивнее.

Однажды изобретатели поняли, что этот «отрицательный эффект» можно где-то применить с пользой, и вся работа пошла теперь в другом направлении. 3 апреля 1943 года изобретатели получили авторское свидетельство на электроискровой способ обработки металла.

Авторское свидетельство № 142511. На рис. 18, А показано подвижное соединение двух частей щековой дробилки. Подвижность достигается благодаря сферической форме чугунного наконечника. Шейка этого наконечника- самое слабое место конструкции, здесь обычно и происходит излом. Можно, конечно, принять меры для предотвращения излома. Ну а если мы заранее умышленно «сломаем» наконечник? Тогда он превратится в цилиндрическую втулку, которую уже невозможно сломать (рис. 18, Б).


ris22.jpg


ris23.jpg

Авторское свидетельство № 152492. Для защиты подземных кабельных линий от повреждений, вызываемых образованием в грунте моро-зобойных трещин, заранее прорывают узкие прорези («трещины») в стороне от трассы кабеля (рис. 19). Рис. 19 Искусственные «трещины» — прорезн предохраняют — Сам по себе этот принцип прост: надо допустить то,что кажется недопустимым,- пусть случится! Но тут мысль изобретателя часто наталкивается на психологический барьер.».

23. Принцип обратной связи

а) Ввести обратную связь.

б) Если обратная связь есть — изменить ее. Примеры, Авторское свидетельство № 283997. Вну*

три градирни ветер образует циркуляционные зоны, что снижает глубину охлаждения воды. Чтобы повысить эффективность охлаждения, в секциях градирни устанавливают температурные датчики и по их сигналам автоматически изменяют количество подаваемой воды.

Авторское свидетельство № 167229. Способ автоматического запуска конвейера, отличающийся тем, что с целью экономии электроэнергии, потребляемой в момент запуска конвейерного двигателя, измеряют мощность, потребляемую двигателем конвейера во время работы, фиксируют ее в момент остановки конвейера н полученный сигнал, обратно пропорциональный весу материала на конвейере, подают на пусковой двигатель в момент запуска конвейера.

Авторское свидетельство № 239245. Способ автоматического регулирования процесса ректификации путем воздействия на расход орошения в колонну в зависимости от температуры и давления на выходе продукта, отличающийся тем, что с целью стабилизации содержания одного из компонентов в трехкомпонентной смеси дополнительно вводят коррекцию по удельному весу выходного продукта.

24. Принцип «посредника»

Использовать промежуточный объект-переносчик.

Примеры. Авторское свидетельство № 177436. Способ подвода электрического тока в жидкий металл, о г-личающийся тем, что с целью снижения электрических потерь ток к основному металлу подводят охлаждаемыми электродами через промежуточный жидкий металл, температура плавления которого ниже, а плотность и температура кипения выше, чем у основного металла

Авторское свидетельство № 178005. Способ нанесения летучего ингибитора атмосферной коррозии на защищаемую поверхность, отличающийся тем, что с целью получения равномерного покрытия внутренних поверхностей сложных деталей через последние продувают нагретый воздух, насыщенный парами ингибитора.

25. Принцип самообслуживания

а) Объект должен сам себя обслуживать, выполняя вспомогательные и ремонтные операции

б) Использовать отходы (энергии, вещества). Примеры. Авторское свидетельство № 261207. Дро-

беметный аппарат, корпус которого облицован изнутри износоустойчивыми плитами, отличающийся тем, что с целью повышения стойкости облицовки плиты выполнены в виде магнитов, удерживающих на своей поверхности защитный слой дроби. На стенках дробемета возникает, таким образом, постоянно обновляемый защитный слой дроби.

Авторское свидетельство № 307584. Способ сооружения каналов оросительных систем из сборных элементов, отличающийся тем, что с целью упрощения транспортировки изделий после монтажа начального участка канала его торцы закрывают временными диафрагмами, готовый участок канала затопляют водой и последующие элементы, также закрытые с торцов временными диафрагмами, сплавляют по этому участку канала.

Авторское свидетельство № 108625. Способ охлаждения полупроводников диодов, отличающийся тем, что с целью улучшения условий теплообмена применяется полупроводниковый термоэлемент, рабочим током которого является ток, проходящий через диод в прямом направлении.

26. Принцип копирования

а) Вместо недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии.

б) Заменить объект или систему объектов их оптическими копиями (изображениями). Использовать при этом изменение масштаба (увеличить или уменьшить копии).

в) Если используются видимые оптические копии, перейти к копиям инфракрасным или ультрафиолетовым.

Примеры. Авторское свидетельство № 86560. Наглядное учебное пособие по геодезии, выполненное в виде написанного на плоскости художественного панно, отличающееся тем, что с целью последующей геодезической съемки с панно изображения местности оно выполнено по данным тахеометрической съемки и в характерных точках местности снабжено миниатюрными геодезическими рейками.

Иногда необходимо (для измерений или контроля) совместить два объекта, которые физически совместить невозможно. В этих случаях целесообразно применять оптические копии. Так была, например, решена задача пространственных измерений на рентгеновских снимках. Обычный рентгеновский снимок не позволяет определить, на каком расстоянии от поверхности тела находится очаг заболевания. Стереоскопические снимки дают объемное изображение, но и в этом случае измерения приходится вести на глаз: ведь внутри тела нет масштабной линейки! Нужно, таким образом, «совместить несовместимое»: тело человека, подвергнутого просвечиванию, и масштабную линейку.

Новосибирский изобретатель Ф. И. Аксенов решил эту задачу, применив метод оптического совмещения. По способу Ф. И. Аксенова стереоскопические рентгеновские снимки совмещаются со стереоскопическими же снимками решетчатого куба. Рассматривая в стереоскоп совмещенные снимки, врач видит «внутри» больного решетчатый куб, играющий -роль пространственного масштаба.

Вообще, во многих случаях выгоднее оперировать не с объектами, а с их оптическими копиями. Например, канадская фирма «Крютер Палп» пользуется специальной фотоустановкой для обмера бревен, перевозимых на железнодорожных платформах. По данным фирмы, фотографический обмер балансов раз в 50-60 быстрее ручного, отклонение же результатов фотообмера от данных точного подсчета не превышает 1-2%.

Еще один интересный пример:

Авторское свидетельство № 180829-новый способ контроля поверхности внутренних полостей сферических деталей. В деталь наливают малоотражающую жидкость и, последовательно меняя ее уровень, производят фотографирование на один и тот же кадр цветной пленки. На снимке получаются концентрические окружности. Сравнивая после увеличения (в проекционной системе) полученные этим способом линии с теоретическими линиями чертежа, с большой точностью определяют величину отклонения формы детали.

27. Дешевая недолговечность взамен дорогой долговечности

Заменить дорогой объект набором дешевых объектов, поступившись при этом некоторыми качествами (например, долговечностью).

Примеры. Правила асептики требуют, чтобы кипячение шприца с иглами для инъекции продолжалось не менее 45 минут. Между тем во многих случаях бывает необходимо ввести лекарство как можно быстрее. Во Всесоюзном научно-исследовательском институте медицинских инструментов и оборудования создан шприц-тюбик для одноразового пользования. Это тонкостенный сосуд из пластмассы, на горловине которого укреплена стерильная игла, защищенная колпачком. Корпус шприца-тюбика в заводских условиях заполняется лекарственным препаратом и запаивается. Такой шприц можно привести в готовность буквально за считанные секунды — для этого достаточно лишь снять колпачок, прикрывающий иглу. Во время инъекции лекарство из тюбика выдавливается, после чего использованный шприц-тюбик выбрасывают.

Патент США № 3430629. Пеленка одноразового использования. Содержит наполнитель типа промокашки.

Существует много патентов такого типа: на одноразовые термометры, мусорные мешки, зубные щетки и т. д.

28. Замена механической схемы

а) Заменить механическую схему оптической, акустической или «запаховой».

б) Использовать электрические, магнитные и электромагнитные поля для взаимодействия с объектом.

в) Перейти от неподвижных пол^й к движущимся, от фиксированных — к меняющимся во времени,


ris24.jpg

Рис. 20 В этой винтовой паре гайка движется без трення, за счет взаимодействия электромагнитных полей.

от неструктурных — к имеющим определенную структуру. г) Использовать поля в сочетании с ферромагнитными частицами Примеры. Авторское свидетельство 163559. Способ контроля износа породоразрушающего инструмента, например буровых долот, отличающийся тем, что с целью упрощения контроля в качестве сигнализации износа применяют монтируемые в теле долота ампулы с резко пахучими химическими веществами, например с этил-меркаптаном.

Авторское свидетельство № 154459. Неизнашиваемая винтовая пара (рис. 20). Винтовая пара состоит из винта 1, в резьбу которого уложена обмотка 2, и гайки 3 с обмоткой 4. Винт и гайка расположены с зазором между ними. Гайка 3 жестко связана с подвижным узлом станка или прибора. При прохождении тока по обмоткам 2 и 4 вокруг них создаются магнитные поля. Замыкание этих полей происходит соответственно через гайку и винт, причем магнитный поток достигает максимальной величины при совмещении витков винта и гайки.

При вращении винта магнитный поток между сместившимися один относительно другого витками обмоток винта и гайки искривляется и, как следствие, возникает усилие, стремящееся восстановить первоначальное взаимное расположение витков. Это усилие и будет вызывать поступательное перемещение гайки с подвижным узлом.

Наличие зазора между винтом и гайкой позволяет значительно продлить срок службы винтовой пары, сделать их практически неизнашиваемыми.

«На одном заводе делали сверхъювелирную по тонкости работу: шлифовали стенки отверстия диаметром в полмиллиметра.

Для такой операции изготовили миниатюрный шли-фовальник диаметром в две десятых миллиметра, обсыпанный алмазной пылью.

Инструментик этот вращала пневматическая турбина со скоростью 1000 оборотов в секунду! Кроме того, шли-фовальник двигался по контуру отверстия, обходя его каждую минуту 150 раз. Рабочий был не в силах проникнуть взглядом в зону обработки, не мог уловить момент, когда крохотный инструмент касался детали. Рабочий то затягивал процесс обработки, то кончал его слишком рано, в обоих случаях детали шли в брак.

Собирались уже конструировать уникальный станок-автомат. Но изобретательская мысль нашла простой выход: деталь изолировали от станка, присоединили к ней один полюс электробатарейки, а другой полюс подвели к станку. В цепь включили усилитель и громкоговоритель. Теперь, как только инструмент касался детали, громкоговоритель «вскрикивал». Кричащий станок издавал звуки, по которым можно было судить и о том, когда началась шлифовка, и о том, как она проходит,- тональность звука менялась» 1.

Авторское свидетельство № 261372. Способ проведения процессов, например каталитических, в системах с движущимся катализатором, отличающийся тем,

что с целью расширения области применения создают движущееся магнитное поле и применяют катализатор с ферромагнитными свойствами.

Авторское свидетельство № 144500. Способ интенсификации теплообмена в трубчатых элементах поверхностных теплообменников… отличающийся тем, что с целью повышения коэффициента теплоотдачи в поток теплоносителя вводят ферромагнитные частицы, перемещающиеся под действием вращающегося магнитного поля преимущественно у стенок теплообменника, для разрушения и турбулизации пограничного слоя.

Французский патент

№ 1499276. После обработки деталей в галтовочных барабанах или вибрационных установках детали нужно отделить от абразивных зерен. Если детали крупные, это сделать нетрудно, если они ферромагнитные, их можно выловить на магнитных сепараторах. Но если детали не обладают магнитными свойствами, а по размерам не отличаются от абразивных зернышек? По данному изобретению задача решается тем, что абразиву придают магнитные свойства. Это можно сделать спрессовыванием или спеканием смеси абразивных зерен и магнитных частиц — стружек, крупинок и т. п., а также внедрением их в поры абразивов.

29. Использование пневмоконструкций и гидроконструкций

Вместо твердых частей объекта использовать газообразные и жидкие: надувные и гидронаполняемые,


ris25.jpg

Рнс. 21. Вместо массивной дымовой трубы — ажурное сооружение: полая спираль, имеющая на витках сопла, через которые подается сжатый воздух, образующий «стенку».

воздушную подушку, гидростатические и гидрореактивные.

Примеры. Авторское свидетельство № 243809. Цель изобретения — улучшение тяги и увеличение высоты рассеивания отводимых газов. Это достигается тем, что корпус трубы (рис. 21) образован конической спиралью /, полые витки которой имеют сопла 2 и соединены с полыми опорами 3, свободные концы которых, в свою очередь, присоединены к компрессору 4.

При включении компрессора 4 воздух, поднимаясь под давлением по опорам 3, попадает в спиральные витки корпуса  и, вырываясь из сопел 2, создает воздушную «стенку».

Авторское свидетельство № 312630. Способ окраски крупногабаритных изделий распылением с удалением паров растворителя и окрасочного тумана через вентиляционную засасывающую систему, отличающийся тем, что с целью уменьшения производственных площадей вокруг окрашиваемого изделия создают восходящую на высоту, превышающую высоту изделия, воздушную завесу, верхние концы которой завихряют посредством напольной вентиляционной засасывающей системы.

Изобретение это преодолевает такое же техническое противоречие, что и в предыдущем случае. Поэтому похожи и решения: пневмостенка вместо жесткой трубооб-разной ограды.

Авторское свидетельство № 264675. Опора для сферического резервуара, включающая основание, отличающаяся тем, что с целью снижения напряжений в оболочке резервуара основание опоры выполнено в виде заполненного жидкостью сосуда с вогнутой крышкой из эластичного материала, принимающей форму опираемой на нее оболочки резервуара.

А вот двойник этого изобретения — авторское свидетельство № 243177. Устройство для передачи усилий от опоры копра на фундамент, отличающееся тем, что с целью обеспечения равномерности передачи давления на фундамент оно выполнено в виде плоского замкнутого сосуда, заполненного жидкостью.

Интересно, сколько еще авторских свидетельств будет выдано на применение одного и того же типового приема: если А должно давить на Б равномерно, положи между А и Б жидкостную подушку…

30. Использование гибких оболочек и тонких пленок,

а) Вместо объемных конструкций использовать гибкие оболочки и тонкие пленки.

б) Изолировать объект от внешней среды с помощью гибких оболочек и тонких пленок.

Примеры. Чтобы уменьшить потери влаги, испаряющейся через листья деревьев, американские исследователи опрыскивают их полиэтиленовым «дождем». На листьях создается тончайшая пластмассовая пленка. Растение, укрытое пластмассовым одеялом, развивается нормально благодаря тому, что полиэтилен значительно лучше пропускает кислород и углекислый газ, чем пары воды.

Авторское свидетельство № 312826. Способ экстракции в системе жидкость — жидкость, отличающийся тем, что с целью интенсификации процесса массообмена струю одной фазы подают через слой газа на поверхность другой фазы, перемещаемой пленкой по твердой поверхности.

31. Применение пористых материалов

а) Выполнить объект пористым или использовать дополнительные пористые элементы (вставки, покрытия и т. п.).

б) Если объект уже выполнен пористым, предварительно заполнить поры каким-то веществом.

Машины всегда строились из плотных (непроницаемых) материалов. Инерция мышления приводит к тому, что задачи, легко решаемые при использовании пористых материалов, зачастую пытаются решить введением специальных устройств и систем, сохраняя все элементы конструкции непроницаемыми. Между тем высокоорганизованной машине присуща проницаемость-примером может служить любой живой организм, начиная с клетки и кончая человеком.

Внутреннее перемещение вещества — одна из важных функций многих машин. «Грубая» машина осуществляет эту функцию с помощью труб, насосов и т. п., «тонкая» машина — с помощью пористых материалов и молекулярных сил.

Примеры. Авторское свидетельство № 262092. Способ защиты внутренних поверхностей стенок емкости от отложений твердых или вязких частиц из находящегося в емкости продукта, отличающийся тем, что с целью повышения эффективности защиты и снижения энергозатрат внутрь емкости, изготовленной из пористого материала, подают через ее стенки не образующую отложений жидкость под давлением, превосходящим давление внутри емкости.

Авторское свидетельство № 283264. Способ внесения добавок в жидкий металл с помощью огнеупорных материалов, отличающийся тем, что с целью улучшения режима внесения добавок в металл погружают пористый огнеупор, предварительно пропитанный материалом добавки.

Авторское свидетельство № 187135. Система испарительного охлаждения электрических машин, отличающаяся тем, что с целью исключения необходимости подвода охлаждающего агента к машине активные части и отдельные конструктивные элементы ее выполнены из пористых металлов, например пористых порошковых сталей, пропитанных жидким охлаждающим агентом, который при работе машины испаряется и таким образом обеспечивает кратковременное, интенсивное и равномерное ее охлаждение.

32. Принцип изменения окраски

а) Изменить окраску объекта или внешней среды.

б) Изменить степень прозрачности объекта или внешней среды.

в) Для наблюдения за плохо видимыми объектами или процессами использовать красящие добавки.

г) Если такие добавки уже применяются, использовать меченые атомы.

Примеры. В кузнечных и литейных цехах, на металлургических заводах, всюду, где необходимо защитить рабочих от действия жары, применяются водяные завесы. Такие завесы отлично защищают рабочих от невидимых тепловых (инфракрасных) лучей, однако слепяще-яркие лучи от расплавленного металла беспрепятственно проходят сквозь тонкую жидкую пленку. Чтобы защитить рабочих и от них, сотрудники польского Института охраны труда предложили окрашивать воду, из которой создается водяная завеса,- оставаясь прозрачной, она полностью задерживает тепловые лучи и в нужной степени ослабляет силу видимого излучения *.

Авторское свидетельство № 165645. В фиксирующий раствор вводят краситель, который обратимо абсорбируется фотографическим слоем и не закрашивает подложку-бумагу или целлулоид. Краситель при последующей промывке водой должен удаляться из слоя. Скорость вымывания красителя из фотографического слоя примерно равна скорости вымывания тиосульфата натрия или несколько меньше ее. Обесцвечивание фотографического изображения свидетельствует б полноте промывки слоя от остатков солей, при помощи которых производилось фиксирование фотографического материала.

33. Принцип однородности Объекты, взаимодействующие с данным объектом, должны быть сделаны из того же материала (или близкого ему по свойствам).

Примеры. Патент ФРГ № 957599. Литейный желоб для обработки расплавленного металла звуком или ультразвуком с помощью звукоизлучателя, помещенного в расплавленный металл, отличающийся тем, что находящаяся в соприкосновении с расплавленным металлом часть звукоизлучателя выполнена из того же металла, что и обрабатываемый металл, или одного из его легирующих компонентов и частично расплавляется этим расплавленным металлом, а остальная часть звукоизлучателя принудительно охлаждается и остается прочной.

Авторское свидетельство № 234800, Способ смазывания охлаждаемого подшипника скольжения, отличающийся тем, что с целью улучшения смазывания при повышенных температурах в качестве смазывающего вещества берут тот же материал, что и материал вкладыша подшипника.

Авторское свидетельство № 180340. Способ очистки газов от пыли, содержащей расплавленные частицы, отличающийся тем, что с целью повышения эффектив-ности процесса исходные газы барботируют в среде, образованной при слиянии этих же частиц в расплав.

Авторское свидетельство № 259298. Способ сварки металлов, при котором свариваемые кромки устанавливают с зазором и подают в него присадочный материал с последующим нагревом свариваемых кромок, отличающийся тем, что с целью улучшения сварки в качестве присадочного материала используют летучие соединения тех же металлов, что и свариваемые.

34. Принцип отброса и регенерации частей

а) Выполнившая свое назначение или ставшая ненужной часть объекта должна быть отброшена

(растворена, испарена и т. п.) или видоизменена непосредственно в ходе работы.

б) Расходуемые части объекта должны быть вос-становлену непосредственно в ходе работы.

Примеры. Патент США № 3174550. При аварийной посадке самолета бензин вспенивают с помощью специальных химических веществ, переводя в негорючее состояние.

Патент США № 3160950. Чтобы при резком старте ракеты не пострадали чувствительные приборы, их погружают в пенопласт, который, выполнив роль амортизатора, быстро испаряется в космосе.

Нетрудно заметить, что этот принцип — дальнейшее развитие принципа динамизации: объект изменяется в процессе действия, но изменяется сильнее. Самолет с меняющейся в полете геометрией крыла-это принцип динамизации. Ракета, отбрасывающая отработанные ступени,- принцип отброса.

А вот изобретения-близнецы:

Авторское свидетельство № 222322. Способ изготовления винтовых микропружин, отличающийся тем, что с целью повышения производительности оправку выполняют из эластичного материала и удаляют путем погружения ее вместе с пружиной в состав, растворяющий эластичный материал.

Авторское свидетельство № 235979. Способ изготовления резиновых шаров-разделителей, отличающийся тем, что с целью придания шару необходимых размеров ядро формуют из смеси измельченного мела с водой с последующей просушкой и разрушением твердого ядра после вулканизации жидкостью, вводимой с помощью иглы.

Авторское свидетельство № 159783. Способ производства полых профилей, отличающийся тем, что с целью получения разнообразных по размерам и форме профилей на сортовых станах прокатке подвергают сварные пакеты, наполненные огнеупорным материалом, например магнезитовым порошком, с последующим удалением наполнителя.

Можно привести сотни подобных изобретений. Трудно представить, сколько времени потеряли изобретатели

на поиски, каждый раз отыскивая идею «с нуля». А ведь здесь один типовой прием: изготавливай объект А на оправке Б, которую можно удалить растворением, испарением, плавлением, химической реакцией и т. д.

Антипод принципа отброса — принцип регенерации.

Авторское свидетельство № 182492. Способ компенсации износа непрофилированного электрода-инструмента при электроэрозионной обработке токопроводящих материалов, отличающийся тем, что с целью увеличения срока службы электрода-инструмента на его рабочую поверхность в процессе обработки непрерывно напыляют слой металла.

Авторское свидетельство № 212672. При гидротранспортировании кислых гидросмесей с абразивными материалами внутренние стенки трубопроводов быстро изнашиваются. Защита их футеровкой сложна, трудоемка, ведет к увеличению наружного диаметра труб. Описываемый способ защиты труб предусматривает образование на внутренних стенках трубы защитного слоя (гарнис-сажа). Для этого в транспортируемую гидросмесь периодически вводят известковый раствор. Таким образом, внутренние стенки трубопроводов всегда защищены от износа, а сечение трубопровода уменьшается незначительно, так как гарниссаж изнашивается под действием абразивной кислой смеси.

35. Изменение физико-химических параметров объекта

а) Изменить агрегатное состояние объекта.

б) Изменить концентрацию или консистенцию.

в) Изменить степень гибкости.

г) Изменить температуру.

Примеры. Авторское свидетельство № 265068. Способ проведения массообменных процессов в системе газ — вязкая жидкость, отличающийся тем, что с целью интенсификации процесса вязкую жидкость перед подачей в аппарат предварительно газируют.

Авторское свидетельство № 222781. Дозатор сыпучих материалов, например минеральных удобрений и ядохимикатов, выполненный в виде шнека, заключенного в кожух с выходным отверстием, отличающийся тем, что с целью возможности регулирования шага винтовая поверхность шнека выполнена из эластичного материала с пружинной, спиралью на внутренней и наружной сторонах (рис, 22).


ris26.jpg

Рис. 22. В дозаторе сыпучих материалов шнек выполнен из эластичного материала с пружинной спиралью; это позволяет регулировать шаг шнека.

36. Применение фазовых переходов

Использовать явления, возникающие при фазовых переходах, например изменение объема, выделение или поглощение тепла и т. д. Примеры. Авторское свидетельство № 190855. Способ изготовления ребристых труб, заключающийся в раздаче заглушённых труб водой, подаваемой под давлением, отличающийся тем, что с целью удешевления и ускорения процесса изготовления поданную под давлением воду замораживают.

Может возникнуть вопрос: чем прием № 36 отличается от приемов № 35-а (изменение агрегатного состояния) и № 15 (принцип динамичности)? Прием № 35-а заключается в том, что вместо агрегатного состояния А объект используют в агрегатном состоянии Б и именно за счет особенностей состояния Б получают нужный результат. Суть приема № 15 в том, что мы пользуемся то свой-

ствами, присущими состоянию А, то свойствами, присущими состоянию Б.

При использовании приема № 36 задача решается за счет явлений, связанных с переходом от А к Б или обратно Если, например, мы наполним трубу не водой, а льдом, ничего с трубой не произойдет. Требуемый эффект достигается за счет увеличения объема воды при замерзании

Авторское свидетельство № 225851. Способ охлаждения различных объектов с помощью циркулирующего по замкнутому контуру жидкого теплоносителя, отличающийся тем, что с целью уменьшения количества циркулирующего теплоносителя и снижения энергетических затрат часть теплоносителя переводят в твердую фазу и охлаждение ведут полученной смесью.

«Фазовые переходы» — понятие более широкое, чем «изменение агрегатного состояния». К фазовым переходам, в частности, относятся и изменения кристаллической структуры вещества. Так, олово может существовать в виде белого олова (плотность 7,31) и серого олова (плотность 5,75). Переход — при 18° С — сопровождается резким увеличением объема (значительно большим, чем при замерзании воды; поэтому и усилия здесь могут быть получены намного большие).

Полиморфизм (кристаллизация в нескольких формах) присущ многим веществам. Явления, сопровождающие полиморфные переходы, могут быть использованы при решении самых различных изобретательских задач. Например, в патенте США № 3156974 используются полиморфные трансформации висмута и церия *.

37. Применение термического расширения

а) Использовать термическое расширение (или сжатие) материалов.

б) Если термическое расширение уже используется, применить несколько материалов с разными коэффициентами термического расширения.

Примеры. Авторское свидетельство № 309758. Способ волочения труб на подвижной оправке при пониженных температурах, отличающийся тем, что с целью создания зазора между трубой и оправкой после волоче-

ния для извлечения последней из трубы без обкатки, в охлажденную трубу перед волочением вводят предварительно подогретую, например, до температуры 50-100° С оправку, извлечение которой после деформации производят после выравнивания температур трубы и оправки.

Авторское свидетельство № 312642. Заготовка для горячего прессования многослойных изделий, выполненных в виде концентрично расположенных втулок, изготовленных из различных материалов, отличающаяся тем, что с целью получения многослойных изделий с напряженными слоями каждая втулка изготовлена из материала, имеющего температурный коэффициент линейного расширения выше температурного коэффициента линейного расширения материала втулки, расположенной внутри нее.

Смысл приема — в переходе от «грубого» движения на макроуровне к «тонкому» движению на молекулярном уровне. С помощью термического расширения можно создавать большие усилия и давления. Термическое расширение позволяет очень точно «дозировать» движение объекта.

Авторское свидетельство № 242127. Устройство для микроперемещения рабочего объекта, например, кристал-лодержателя с затравкой, отличающееся тем, что с целью обеспечения максимальной плавности оно содержит два стержня, подвергаемых электронагреву и охлаждению по заданной программе, находящихся в закрепленных на суппортах термостатируемых камерах и поочередно перемещающих объект в нужном направлении,

38. Применение сильных окислителей

а) Заменить обычный воздух обогащенным.

б) Заменить обогащенный воздух кислородом.

в) Воздействовать на воздух или кислород ионизирующими излучениями.

г) Использовать озонированный кислород.

д) Заменить озонированный (или ионизированный) кислород озоном.

Основная цель этой цепи приемов — повысить интенсивность процессов. В качестве примеров можно назвать способ спекания и обжига дисперсного материала с при-менением интенсификации процесса горения путем продувки воздухом, обогащенным кислородом; плазменно-дуговую резку нержавеющих сталей, при которой в

качестве режущего газа берут чистый кислород; интенсификацию процесса агломерации руд путем ионизации окислителя и газообразного топлива перед подачей в слой шихты и т. д.

39. Применение инертной среды

а) Заменить обычную среду инертной.

б) Вести процесс в вакууме.

Этот прием можно считать антиподом предыдущего.

40. Применение композиционных материалов Перейти от однородных материалов к композиционным.

Пример. Патент США № 3553820. Легкие прочные тугоплавкие изделия выполнены на основе алюминия и упрочнены множеством покрытых танталом волокон углерода. Такие изделия характеризуются высоким модулем упругости и используются в качестве материалов для конструирования кораблей воздушного и морского флотов.

Авторское свидетельство № 147225. Способ записи, при котором используют чернила, содержащие мелкие магнитные частицы. В отличие от обычных, магнитные чернила управляются магнитным полем.

Композиционные материалы — составные материалы, которые обладают свойствами, не присущими их частям. Например, пористые материалы, о которых шла речь в приеме № 31, представляют собой композицию из твердого вещества и воздуха; ни твердое вещество, ни воздух порознь не обладают теми свойствами, которые есть у пористых веществ.

Композиционные материалы изобретены природой и широко ею используются. Так, древесина представляет собой композицию целлюлозы с лигнином. Волокна целлюлозы обладают высокой прочностью на разрыв, но легко изгибаются. Лигнин связывает их в единое целое и сообщает материалу жесткость.

Интересный композиционный материал представляет сочетание легкоплавкого вещества (например, сплава Вуда) с волокнами тугоплавкого материала (например, стали). Такой материал легко плавится, а застыв, обладает высокой прочностью. Постепенно происходит взаимная диффузия частиц припоя и волокон, в резуль^ тате чего образуется сплав с высокой температурой плавления.

Другой композиционный материал- взвесь частиц

кремния в масле — способен твердеть в электрическом поле .

* * *

В статье Э. Долота и И. Клямкина «Обыкновенные эдисоны» приведено любопытное высказывание актера Московского театра сатиры Лепко. Штампы, говорил Лепко, вовсе не помеха в творчестве, наоборот, это рабочее орудие артиста. Весь вопрос в том, насколько широк набор этих штампов. Слабый актер -три или четыре штампа, про него говорят, что он в каждой роли повторяет себя. Сильный, талантливый актер — пятьдесят штампов, сто, может быть…

Знание типовых приемов, этих «штампов» изобретательства, резко повышает эффективность творчества. Возьмем, например, конкретную задачу. Нужно, чтобы при стрельбе дробью заряд не разлетался в стороны, а шел узким конусом. Обычный путь повышения кучности боя — увеличение длины ствола. Но тут очевидное техническое противоречие: выиграешь в форме конуса разлета дроби, проиграешь в длине ствола. Как быть?

Если трудно догадаться сразу, давайте уберем термины «ствол» и «дробь». Какие-то частицы движутся по трубе, и пока стенки направляют движение частиц — все в порядке. Но трубу нельзя сделать слишком длинной, как же направлять полет частиц?

В этой задаче такое же техническое противоречие, как и при сооружений дымовых труб. Следовательно, здесь можно применить тот же прием (№ 29), что и в авторском свидетельстве № 243809: использовать вместо «твердой» конструкции пневмоконструкцию. Пусть частицы движутся в газовых «стенках». Именно так решена эта задача по японскому патенту № 44-20959. В коротком стволе имеются газовыпускные отверстия. На ствол надет кожух, обрез которого совпадает с обрезом ствола. При выстреле пороховые газы выходят в кольцевой канал между стволом и кожухом и выбрасываются в виде кольца, которое охватывает дробовой заряд.

Еще одна задача: как изготовлять волочением трубки из нихрома с толщиной стенок около 0,01 мм при допуске в 0,003 мм? Для изобретателя, незнакомого с типовыми приемами, это задача примерно третьего уровня. Если же изобретатель овладел типовыми приемами, задача покажется ему очень легкой — никак не выше первого уровня. Прием № 34: «Изготавливай объект А на оправке Б, которою можно удалить растворением, испарением, плавлением, химической реакцией и т. д.». И вот авторское свидетельство № 182661: «Способ изготовления тонкостенных трубок из нихрома, отличающийся тем, что… волочение… осуществляют на деформируемом алюминиевом стержне, удаляемом после обработки вытравливанием щелочью».

Современный изобретатель должен хорошо знать типовые приемы устранения технических противоречий. Без этого немыслима научная организация творческого процесса.

КАК РАБОТАЕТ АЛГОРИТМ

Изучение АРИЗ-71 мы еще продолжим в следующих главах, а пока проследим действие алгоритма на конкретной задаче.

Задача 5

Ледокол продвигается во льдах по принципу клина. Поэтому скорость продвижения и толщина доступных преодолению льдов зависят в основном от мощности энергетических установок ледокола. Путь развития ледоколов — это увеличение мощности их двигателей. У современного лайнера на 1 т водоизмещения приходится 0,5 л. с; у ледоколов это отношение в 6 раз больше. До 70% длины корпуса ледокола занято двигательными установками, топливными емкостями (танками) и различными обслуживающими системами. Ледокол буквально заполнен «двигательной частью», охлаждение двигателей — сложная проблема,

«Периодическое нарушение работы охлаждающей системы в тяжелых ледовых условиях наблюдается на всех ледоколах, и эффективное решение этой проблемы пока не найдено. Например, из опыта американских ледоколов известно, что в ряде случаев не прочность льда, а прекращение подачи охлаждающей забортной воды ограничивает продвижение судна» (Юдовин Б. С. Энергетические установки ледоколов. М., «Судостроение», 1967, стр. 182).

«Двигательная часть» современных ледоколов настолько гипертрофирована, что на судне не остается места для размещения сколько-нибудь значительного количества грузов. Поэтому за ледоколом идет караван из трех-четырех транспортных судов. «Начало и продолжительность навигации в Арктике и в замерзающих портах определяет ледовая обстановка. Ведь принцип действия ледокола, стоит ли на нем паровая машина, как сто лет

назад, или новейший атомный реактор, почти не изменился. С разбега вползает он на преградившее путь ледяное поле и своим весом ломает его. Снова разбег, и снова несколько метров вперед. Надсадно ревут двигатели, скрежещет лед об обшивку. На почтительном расстоянии сзади стоит караван обычных судов, ждет, когда ледокол проложит путь. Но льды становятся толще и толще. Полтора, два, два с половиной метра! Ледокол застревает. Механики пускают машины «враздрай» — в разные стороны. Судно начинает «мотать носом», пытаясь освободиться от ледяного плена. Насосы перекачивают сотни тонн воды из носовых цистерн в кормовые, из левых цистерн — в правые. Ледокол качается с носа на корму, переваливается с боку на бок, разжимая, как клин, льдины… Дорога за ледоколом слишком тяжела для обычных судов. С трудом увертываются они от плавающих ледяных глыб, грозящих распороть им бока. Пространство перед причалами, а иногда и вся акватория порта превращаются в сплошную массу битого льда. Каждый день ледоколы добавляют новые порции. В результате лед смерзается, и вскоре толщина его становится в 2-3 раза больше первоначальной. Теперь уж и сам ледокол не в силах одолеть эту преграду. Такие случаи неоднократно наблюдали в Архангельском, в Ленинградском портах. Короче говоря, мечта капитанов — иметь ледокол, способный преодолевать льды любой толщины и, главное, оставляющий за собой не ледяное крошево, а чистый канал» (Муслин Е. Пушки и лед. «Знание — сила», 1968, №5).

Известны различные способы облегчения продвижения сквозь льды. Издавна, например, применяется разрушение льда с помощью взрывчатых веществ. Недостатки этого способа — большой расход ВВ, низкая производительность, крайняя неэкономичность.

На небольших речных ледоколах устанавливают вибрационные установки. «Многотонные чугунные диски закрепляют на валах специальных машин, которые намертво привинчивают к носовой палубе. Едва только эта машина заработает, ледокол начинает трясти и раскачивать, его нос ходит ходуном, так что не только находиться там — со стороны глядеть страшно! Кажется, что вот-вот виброустройство вырвет «с мясом». Судно бьется о лед, словно в лихорадке,- лед в конце концов не выдер-

живает ударов, поддается» (Каневгский 3. Ледовая пахота, «Знание — сила», 1969, № 8).

Применение ВВ, вибрация — все это не дает существенного эффекта.

Нужно придумать способ, обеспечивающий быстрое продвижение ледоколов во льдах толщиною до 3 м. Способ должен быть экономичен и осуществим при современном уровне техники.

Сейчас мы не будем уточнять задачу — это входит в процесс решения по АРИЗ, введем лишь некоторые обязательные ограничения.

1. По условиям задачи транспортировку грузов по морю нельзя заменять; переброска их авиацией или железнодорожным транспортом отвергается.

2. Нельзя заменять корабль подводной лодкой. Подводные лодки имеют очень большую осадку в надводном положении. В Англии, например, спроектирован подводный танкер с осадкой в 18 м, его придется загружать и разгружать в открытом море.

Решать задачу надо применительно к кораблю водоизмещением в 5-20 тыс. т. Корабль должен иметь в свободной воде нормальную скорость (т. е. 18-20 узлов).

Решение задачи 5

Часть 1

1 — 1. а) Надо увеличить скорость движения каравана судов и ледокола во льдах.

б) Нельзя увеличивать мощность двигателей ледокола — эта возможность исчерпана.

в) Надо снизить стоимость транспортировки грузов в ледовых условиях.

г) Затраты должны быть ниже, чем при использовании лучших современных ледоколов.

д) Цель — снизить стоимость одного тонно-километра транспортировки груза.

1-2. Обходный путь — отказаться от ледокола. Ледокол- машина для изготовления канала во льдах. Если транспортные суда научатся ходить во льдах без канала, отпадет необходимость в ледоколе.

1-3. Итак, с ледоколом или самостоятельно?

а, в) В водном транспорте отчетливо проявляется тенденция к «само» (например, от буксируемых барж — к самоходным баржам).

б, г) Тенденция к «само» наблюдается и в сельхозмашиностроении (различные самоходные установки вместо прицепов), и в авиации (поэтому не были осуществлены многочисленные проекты прицепных пассажирских пла-неропоездов).

д) Обходная задача представляется значительно более трудной, в некотором смысле даже нереальной, дикой: мы хотим, чтобы транспортное судно шло во льдах быстрее ледокола… Но анализ свидетельствует в пользу обходной задачи. Выбираем ее.

1-4. Примем требуемую скорость во льдах равной 6 узлам (втрое больше, чем у существующих ледоколов), толщину льда — 3 м.

1-5. Поправка на время: скорость — 8 узлов, толщина льдов — до 3,5 м (практически это предельная величина).

1-6. То, что нам предстоит придумать, должно надежно работать в полярных условиях. Отсюда требование: как можно меньше подвижных механизмов и выступающих деталей (они смерзаются, ломаются льдами и т. п.).

Часть 2

2-1 а) Анализ патентной информации сразу выявляет чрезвычайно интересный факт: нет изобретений, относящихся к выбранному нами обходному пути. Свыше ста лет развитие ледоколов идет в рамках исходной схемы. Даже наиболее оригинальные изобретения послед^ них лет не выходят за пределы этой схемы. Изобретатели из Ленинградского НИИ Арктики и Антарктики предложили разрушать лед системой фрез или импульсными водометами1. В американском патенте № 3130701 предлагается заводить носовую часть ледокола под лед и взламывать лед снизу: опускание носовой части производится затоплением особых цистерн, а подъем — опорожнением этих цистерн и одновременной подачей воздуха в надувную емкость, расположенную под днищем ледокола. По патенту ФРГ 1175103 предлагается в носовой части корабля устанавливать десятки бивней — «направленных вперед, изогнутых и спускающихся под лед стальных клиновидных плоскостей».

Совсем свежее предложение предусматривает, что «ис-

полнительный орган выполнен в виде расположенных вдоль корпуса, регулируемых по высоте резцов, а в задней части корпуса шарнирно установлена стрела, на конце которой закреплена удаляющая разрушенный лед плита». Это уже не корабль, а специализированный агрегат по изготовлению канала во льдах…

Много авторских свидетельств и патентов выдано на различные устройства для удаления битого льда из-под днища ледокола и очистки канала. Предложено даже специальное ледоочистительное судно, оборудованное установками, направляющими лед под ледяное поле. Система «ледокол — караван» очень далека от идеальной машины: ледокол «возит самого себя», а тут добавится еще одно судно — только для обслуживания канала. Это явно отдаляет исходную схему от идеальной машины.

Патентный анализ, таким образом, подтверждает, что прямой путь ведет в тупик излишней специализации. Мы правильно сделали, отдав предпочтение обходному пути.

б) Мы решаем задачу о продвижении сквозь плотную среду; ведущая отрасль техники в данном случае — горная техника (проходка шахт, штреков, выемка угля, руды и т. п.). Лед — горная порода; посмотрим, как движутся машины в более плотных горных породах.

Здесь уже давно применяют водометы, гидромониторы. Идут эксперименты с различными электрофизическими способами разрушения угля, руды, камня. Используют нагревание токами высокой частоты, контактный электропробой, электрогидравлический эффект и т. п. К сожалению, применить какой-либо из этих методов в нашей задаче невозможно: слишком велик объем льда, который надо разрушать в единицу времени, чтобы обеспечить требуемую скорость движения судна.

в) Обратная задача — не разрушать, а укреплять лед. Решение — армирование льда. Такое решение явно не годится, а чтобы использовать его «с обратным знаком», нужно добавлять в лед что-то, уменьшающее его прочность. Но и этот путь не годится: потребуется слишком большой расход вещества-разрыхлителя.

2-2. Применим оператор РВС. Будем считать объектом корабль, а основным размером — его ширину (от длины мало что зависит).

а) Ширина корабля стремится к нулю. Допустим, она равна 1 мм. Корабль-лезвие?

б) Начнем теперь увеличивать ширину: 10 м, 100 м, 1000 м, 10 000 м… Бее труднее и труднее двигать сквозь лед такую громаду. Положить корабль на бок?

в) Скорость движения корабля близка к нулю. В этом случае можно просто потихоньку растапливать лед. Расход топлива тоже будет стремиться к нулю.

г) Скорость повысилась до 50 узлов, 100 узлов… Корабль должен мчаться, как судно на подводных крыльях. Любой способ разрушения льда не годится — потребуется слишком большая мощность. Нужно придумать нечто, что позволит идти сквозь лед, не расходуя энергии. Как?

д) Допустимые расходы стремятся к нулю. Снова тот же вывод: не разрушать лед (за это всегда надо платить).

е) Если допустимы неограниченные расходы, задача легко решается: применить лазеры, пусть они пробивают дорогу сквозь лед.

2-3. Изложим задачу в двух фразах, убрав такие термины, как «ледокол», «ледорез» или «ледолом» (они заранее привязывают нас к какой-то технологии разрушения льда).

Итак, задача: «Дана система из корабля и льда. Корабль не может идти с большой скоростью сквозь лед». (Можно, вообще говоря, убрать и термин «корабль», но он достаточно широк и вряд ли сильно стеснит воображение.)

2-4. Корабль — технический объект, его можно изменять как угодно. Лед — природный объект, изменять его крайне трудно. Следовательно, надо корабль отнести к «а», лед — к «б».

2-5. Объектом для дальнейшего анализа будет корабль.

Вывод неожиданный: традиционные попытки решения задачи связаны с изменением льда: его ломают, режут, взрывают… Корабль кажется неизменным, мы привыкли к его определенной форме, а лед кажется легко изменяемым На самом деле все наоборот. Чтобы расплавить один кубометр льда — все равно, чем: архисовременным лазером или простым огнем,- нужно затратить 80 000 ккал тепла (без учета потерь). Большое количество энергии нужно и для того, чтобы тем или иным способом искрошить кубометр льда. Куда проще разрушать


ris27.jpg

Рис. 23. К задаче 5, шаг 3-2. «Было» — корабль дошел до льда и остановился; «Стало» — тот же корабль каким-то образом движется сквозь лед

не лед, а корабль! Ведь корабль можно сделать легко-разрушаемым — это зависит от нас…

Мы пришли к весьма дикому выводу. Кто-то, может быть, уже подходил к этой мысли — и останавливался перед психологическим барьером.

Часть 3

3-1. Сформулируем идеальный конечный результат (ИКР): корабль сам идет сквозь лед с большой скоростью и с нормальным {как на чистой воде) расходом энергии.

3-2. На рис. 23: «Было» — корабль дошел до льда и остановился; «Стало» — тот же корабль каким-то образом движется сквозь лед.

3-3. Не может выполнить требуемого действия участок АБ носовой части корабля, упирающийся в лед. Можно ответить и по-другому: не может выполнить требуемого действия объем корпуса между АБ и ВГ.

3-4. а) Мы хотим, чтобы эта часть не упиралась в лед.

б) Она жесткая, твердая, сплошная — поэтому она и упирается.

в) Эта часть нужна для сохранения целостности корпуса и не нужна, чтобы не упираться в лед.

3-5. Поскольку эта часть нужна, придется сохранить ее. А поскольку она нам мешает, придется уменьшить ее до минимума.

3-6. Размеры этой части определяются толщиной льда и шириной корабля. Уменьшить толщину льда мы не можем. Остается уменьшать ширину корабля. Нам не надо,лтобы корабль был вообще плоским (рис. 24, а). Мы рассматриваем изменения той части корпуса, кото-


ris28.jpg

Рис. 24 Чем уже полоса разрушаемого льда, тем меньше расход энергии.

рая совпадает со слоем льда. Пусть эта часть будет плоской (24,6).

3-7 и 3-8. Получается неустойчивая форма. Чтобы корабль был устойчивым и плоским, нужны две плоскости, соединяющие верхнюю и нижнюю части корпуса (рис. 24, в).

Часть 4

4-1. Общая ширина стенок-лезвий в 20-25 раз меньше обычной ширины ледокола. Следовательно, можно рассчитывать на существенное уменьшение расхода энергии при движении во льдах. Конструкция корабля в целом упрощается (вследствие резкого снижения мощности двигателей). Усложняется решение второстепенных вопросов, например, передвижения людей между верхней и нижней частями при плавании во льдах.

4-2. Такого рода трудности могут быть сняты, если нижняя часть будет только грузовой. Например, танкерной.

4-3. Теперь в идее решения нет недостатков, при условии, что наш корабль будет хорошо двигаться и в чистой воде. Интересно отметить, что в обычном корабле-строении за последние годы тоже наметилась тенденция поднять верхнюю часть корабля над волнами, а нижнюю часть (с двигателями) опустить вниз.

4-4. Современные ледоколы полностью исчерпали возможности своего развития: нельзя поставить на ледокол более мощные двигатели, чем те, какие уже стоят. Новая схема, по которой нужно разрушать как можно меньше льда, имеет только преимущества. Хотя нельзя не учитывать и некоторые моральные стороны перехода к новой схеме: психологическую инерцию, приверженность специалистов к привычному принципу «ломай по* больше» (корпусом ледокола, фрезами, водометами и т. п.).

Часть 5

Хотя идея решения и найдена, обратимся ради контроля к таблице устранения технических противоречий.

5-1. Нам надо увеличить скорость (строка 9). Или производительность (строка 39), если рассматривать корабль как машину для транспортировки груза.

5-2. Известный путь увеличения скорости (производительности) движения во льдах — увеличение мощности двигателей.

5-3. Выбираем колонку 21.

5-4. Противоречие типа 9-21, приемы: 19, 35, 38, 2. Противоречие типа 39-21, приемы: 35, 20, 10.

5-5. Прием 35(a)-изменение агрегатного состояния объекта — соответствует найденному решению.

Мы могли бы и сразу — без анализа — обратиться к таблице. Но в этом случае ответ был бы неожиданным: «Сделать корабль жидким или газообразным». После шага 3-3, даже если у нас и нет идеи решения, мы знаем часть объекта, к которой надо приложить прием, подсказанный таблицей. Нет необходимости делать корабль жидким или газообразным, достаточно изменить агрегатное состояние той его части, которая находится на уровне льда.

Часть 6

6-1. Раньше корабль входил в систему «ледокол — транспортные суда, следующие за ним». Коль скоро наше транспортное судно само движется во льдах, отпадает

надобность в ледоколе. Можно рассуждать по-другому: ледокол, освобожденный от излишних двигательных установок, сам может возить груз.

6-2. Поскольку разрушение льда ведется теперь узкими лезвиями, можно использовать такие приемы разрушения льда, которые раньше были неэкономичными, например, различные электрофизические способы.

6-3. Смысл найденной идеи: не идти напролом по всему фронту, а продвигаться узкими лезвиями. Вероятно, эта идея может быть применена в технике земляных работ, где почти всегда идут напролом…

НЕСКОЛЬКО УЧЕБНЫХ ЗАДАЧ

Задачу о ледоколе мы решили «в обход»: на первой же стадии решения цель была изменена. Возьмем теперь задачу о дождевателе и рассмотрим такой случай, когда цель не меняется.

Чтобы не было соблазна идти обходными путями, начнем с шага 2-3, а все предшествующие шаги заменим краткой патентной информацией.

Решение задачи 2

Основная тенденция в развитии самоходных дождевальных агрегатов — увеличивать длину крыльев1. Чтобы несколько уменьшить консольную нагрузку на крылья, их снабжают опорными тележками с колесами. Так, например, устроен агрегат по патенту ФРГ № 1068940 (рис. 25, а). В английском патенте № 778716 крылья выполнены в виде шпренгельных (принцип дробления!) ферм (рис. 25, б). К сожалению, опорные тележки не избавляют от необходимости делать крылья жесткими и, следовательно, тяжелыми. Не случайно патент АРЕ № 2698 предусматривает самоходные опорные тележки. Круг, таким образом, замыкается: конструкция вновь усложняется.

Попробуем найти лучшее решение.

2-3. Дана система, состоящая из тележки, крыльев и расположенных на них распылителей воды. Увеличение длины крыльев сильно утяжеляет систему.

2-4. В принципе можно менять все элементы* тележку, крылья и распылители. Но если мы решаем прямую задачу (увеличение размаха крыльев), тележка и распылители должны остаться неизменными Поэтому

а - крылья.


ris29.jpg

Рис. 25. Основная тенденция развития самоходных дождевальных агрегатов - увеличение длины крыльев: а - агрегат по патенту ФРГ № 1068940; б - в английском патенте № 778716 крылья сделаны в виде шпренгельных шарнирных ферм.

б) -тележка и распылители.

2-5. Крылья.

3-1. Крылья при поливе сами держатся над полем (при размахе в 200-300 м).

3-2. См. рис. 26.

3-3. Не выполняют требуемого действия «лишние» участки крыльев АБ и ВГ.

3-4. а) Нам надо, чтобы АБ и ВГ сами держались над землей.

б) Мешает вес этих частей.

в) Части АБ и ВГ должны что-то весить (это части конструкции) и в то же время веса у них не должно быть.

3-5. Части АБ и ВГ будут держаться над землей, если мы предельно уменьшим их вес (как в задаче о ледоколе предельно уменьшали ширину взаимодействующей со льдом части) или как-то уравновесим крылья.

3-6. Облегчение крыльев — путь, ведущий к надувным конструкциям. Этот путь рассмотрен в условиях задачи. Остается уравновешивание: к частям АБ и ВГнадо приложить силы, равные по величине силе веса этих частей и противоположные по направлению. Силы могут быть аэродинамические (у нас крылья), гидродинамические и т. д.


ris30.jpg

Рис. 26. К задаче 2, шаг 3-2: крылья сами себя держат гидрореактивной силой подаваемой в распылители воды.

3-7. Аэродинамические силы в данном случае малы.

Чтобы крылья сами себя держали, целесообразно использовать гидрореактивную силу подаваемой в распылители воды.

Напор воды в гидросистеме (23 м на концах крыльев) достаточен для самоподдержания леек. Расчет показывает, что легкая гидросистема может сама себя поддерживать и передвигать. Но даже если гидрореактивной силы было бы недостаточно, следовало хотя бы частично облегчить крылья. Пусть в нерабочем положении эти легкие крылья будут опущены вниз. При поливе гидрореактивная сила поднимет концы крыльев.

* * *

Алгоритм не избавляет изобретателя от необходимости думать. Одна и та же задача может быть решена на разных уровнях — в зависимости от индивидуальных качеств изобретателя. Проследим это на примере.

Задача 6

При горных работах раньше производили последовательные взрывы десяти зарядов в течение двух минут. Оператор успевал замыкать контакты цепи с электродетонаторами вручную. Но при новой организации горных работ необходимо за 0,6 сек. последовательно включить 40 контактов, причем промежутки между взрывами неравны и каждый раз меняются. Например, взрыв № 2 должен следовать через 0,01 сек. после взрыва № 1; взрыв № 3 — через 0,02 сек. после взрыва № 2 и т. д. В другой раз взрыв № 2 должен произойти через 0,03 сек. после взрыва № 1 и т. д. График включения желательно выдержать с точностью до 0,001 сек.

Нужен предельно простой, надежный и точный способ включения.

Решение задачи 6

3-3. Дана система из 40 пар проводов (контактов) и 40 «замыкалок» (или одной подвижной «замыкалки»). Трудно замыкать контакты по графику.

(Электродетонаторы не входят в рассматриваемую систему Надо замыкать контакты, а куда идет ток — безразлично.)

2-4. а) «Замыкалка». б) Контакты. (В условиях данной задачи контакты — это просто концы проводов, которые надо замкнуть. Менять провода мы не можем: все равно будет что-то, проводящее ток А вот «замы-калку» можно менять как угодно. Если мы отнесем к «б» оба элемента — контакты и «за-мыкалку»,- объектом станет внешняя среда. На шаге 3-3 выделится часть этой среды то, что находится между контактами. И дальнейшее решение совпадет с тем случаем, когда выбрана «замыкалка».) 2-5. «Замыкалка».

3-1. «Замыкалка» сама соединяет контакты точно по графику.

3-2. См. рис. 27.

3-3. Не может осуществлять требуемого действия подвижная часть «замыкалки».

3-4. а) Нам надо, чтобы «замыкалка» сама передвигалась по графику.

б) «Замыкалка» не может передвигаться без применения каких-то сил.

в) Для передвижения «замыкалки» нужны силы, а мы хотим, чтобы «замыкалка» двигалась сама, т. е. без наших усилий.

3-5. «Замыкалка» будет двигаться сама, если в ней самой появятся силы.

3-6 Если силы появляются сами — это естественные силы.

3-7. Простейший случай движения под действием естественных сил — падение. «Замыкалка» должна двигаться под действием силы тяжести. Это обеспечит движение по определенному закону, т. е. по графику.

3-8 В трубке создан вакуум. Падает груз и замыкает контакты. Переналаживание легко осуществляется, если в трубке много контактов и можно подключаться к тем, которые нужны.


ris31.jpg

Рис 27 К задаче б, шаг 3-2 «замыкалка» должна двигаться сама, без участия человека

Сопоставим это с решением по авторскому свидетельству № 189597: «Устройство для установления заданных промежутков времени, отличающееся тем, что с целью повышения точности измерений при записи сейсмограммы оно выполнено в виде стержня с расположенным на нем грузом, замыкающим во время падения контакты, соединенные с электродетонаторами».

Такие ответы учебных задач, защищенные авторскими свидетельствами и отражающие современный уровень творческой мысли в данной области, мы будем называть контрольными ответами.

Смысл изучения АРИЗ, конечно, не в том, чтобы научиться находить контрольный ответ. Решить учебную изобретательскую задачу — значит, дать ответ, не очень отличный от контрольного (на первых этапах обучения), сходный с ним или превосходящий его (на завершающих этапах обучения)

Задачу 6 можно было решить чисто конструкторским путем (например, используя цепи с линиями задержки), но при этом не удалось бы совместить предельную простоту с требуемой точностью Контрольный ответ соответствует второму уровню перебрав несколько десятков вариантов, к нему можно было прийти и без АРИЗ.

Попробуем теперь усложнить задачу. Это даст нам возможность в большей мере использовать АРИЗ.

Задача 7

Возьмем в качестве прототипа ответ 3-8 на задачу 6. Имеется стеклянная трубка с вакуумом; падает металлический шарик, замыкает введенные в трубку контакты. Недостаток прототипа — нет свободного падения «замы-калки»: шарик все-таки касается контактов и, следовательно, притормаживается.

Как быть?

Если взять 40 трубок разной длины, мы избавимся от трения (контакты будут только на дне), но усложним прибор. Заменить контакты микрокатушками, а шарик- магнитом? Останется трение магнита о силовые линии тока в катушках. К тому же схема сильно усложнится введением усилителя. Ввести световое замыкание? Плохо. Мы снова усложняем схему…

Прибор должен остаться простым, а точность его по сравнению с прототипом должна быть повышена. Задача учебная, поэтому менять ее нельзя; надо обязательно сохранить исходную схему (контакты и падающая «замы-калка»).

Решение задачи 7

2-3. Дана система из вакуумной трубки, контактов и «замыкалки». При падении «замыкалка» трется о контакты.

2-4. а) «Замыкалка», контакты, б) Трубка. (Сейчас, когда мы рассматриваем трение «за-мыкалки» о контакты, оба эти элемента в равной мере могут быть отнесены к «а». Трубку тоже можно менять, но в меньшей степени; у трубки своя функция — держать вакуум.) 2-5. «Замыкалка».

(Можно взять контакты, можно взять «замы-калку-контакты»- в данном случае это безразлично, так как все равно придется рассматривать взаимодействие трущихся частей.) 3-1. «Замыкалка» при падении сама замыкает контакты без трения.

Для замыкания нужно соприкосновение, т. е. трение. ИКР говорит: пусть трение будет без трения! Дикая идея, не так ли?

Здесь возникает сильный психологический барьер, и дальнейший ход решения во многом зависит от индивидуальных качеств изобретателя, прежде всего — от смелости и организованности мышления. Нужно уметь не останавливаться перед барьером, не отступать, не уходить в сторону.

3-2. Итак, шарик должен проходить сквозь контакты без трения! Тут может появиться идея жидкого шарика. Но это решение не годится: жидкость будет испаряться, исчезнет вакуум, нарушится свободное падение.

3-3. Не может выполнить требуемого действия наиболее широкая часть шарика. Его, так сказать, антиталия…

3-4. а)Нам надо, чтобы шарик двигался без трения, т. е. не касаясь контактов.

б) Для замыкания антиталия должна плотно прикасаться к контактам.

в) Для «а» нужно, чтобы шарик двигался; для «б» — чтобы он не двигался…

, 3-5. Значит, шарик должен одновременно двигаться и не двигаться.

Раньше было «трение без трения», теперь «движение без движения»… Подобно тому как перед рассветом усиливается темнота, так и перед выходом к новой идее мысль наталкивается на препятствия, кажущиеся особенно трудными. Мы будем называть это явление предрассветным эффектом. Помните, Максутов подошел к мысли, что приходится усложнять конструкцию. Раньше он останавливался на этом месте (темнота сгущалась, дальше не хотелось думать!). Но в поезде Максутов решил «пофантазировать»: допустил возможность усложнения конструкции и продолжал размышление. И вот оказалось, что усложнение — кажущееся.

3-6. Придется разделить шарик. Пусть одна часть, а именно антиталия, дойдя до контакта, останавливается, а другая часть шарика (все остальное) -продолжает свободное падение.

3-7, 3-8. Сделаем «замыкалку» составной (рис. 28). Верхнее кольцо, дойдя до первой пары контактов, остановится и замкнет первую цепь. Остальная часть «замыкалки» будет при этом продолжать свободное падение: остановка верхнего кольца не отразится на нижних кольцах, гак как при свободном падении верхнее кольцо не давит на нижние кольца Исключено и сдвижение колец в сторону- нет сил, способных вызвать это сдвижение.

Вторая пара контактов выдвинута к оси трубки больше, чем первая пара. На второй паре контактов задерживается второе кольцо, а оставшаяся часть «замыкалки» снова продолжает падение и т. д.


ris32.jpg

Рис. 28. Каждая пара контактов задержит только «Свое» кольцо.

Прикинем теперь, как будет устроена трубка. Предположим, длина трубки — 3 м (это вполне допустимо по аналогии с прототипом). Первый метр оставим нерабочим: «замыкалка» там только разгоняется. Следующие два метра «замыкалка» в свободном падении пройдет за 0,2 сек. Среднее расстояние между контактами на этом участке: 200 см: 40 = 5 см. Ясно, что число контактов можно существенно увеличить. Подключая цепи к тем или иным контактам, мы сможем реализовать разные графики включения. Средняя скорость движения «замыкалки» 1 м за 0,1 сек. Значит, 0,001 сек. соответствует точность установки контактов в 1 см. А контакты можно легко установить с точностью, в десять раз большей. При диаметре трубки в 80 мм среднее сдвижение контактов к оси трубки-2 мм. «Перезарядка» прибора достигается его переворачиванием. Одновременное сбрасывание всех колец — освобождением нижнего кольца, на котором свободно лежат все остальные кольца.

Итак, мы все-таки получили трение без трения! Найденный принцип значительно шире конкретной задачи. В сущности, мы нашли способ опорного движения без трения об опоры… Решить задачу на таком уровне без АРИЗ — путем перебора вариантов — очень нелегко. Вы можете убедиться в этом, предложив задачу 7 своим друзьям. Помните, что при этом нельзя менять задачу: должна быть усовершенствована исходная схема (с падающим грузом, замыкающим контакты). И еще: условия задачи надо не пересказывать, а давать в письменном виде. Пусть решающий ознакомится с контрольным ответом по задаче 6, а затем прочитает условия задачи 7,

Разобрав несколько задач, которые мы привели, читатель может сделать вывод, что для АРИЗ характерно стремление получить требуемый эффект при минимальных затратах. В задаче 5 мы стремились к тому, чтобы как можно меньше разрушать лед: разрушенный лед сам по себе никому не нужен, это только «плата» за грубый, несовершенный способ движения. В задаче 2 крылья дождевателя держались «сами по себе». В задаче 7 трение было снято простым разделением «замыкалки».

Для обычного инженерного мышления типично другoe: готовность «платить» за полученный эффект. «Нужно опустить эту тяжелую трубу на откос,-думает инженер.Прекрасно. Смонтируем кран, он опустит трубу». Кран — это и есть плата за реализацию действия, требуемого задачей.

Изобретатель думает иначе: «Нужно опустить эту трубу. Ну, что же, надо делать так, чтобы труба как-то сама легла на откос».

Мы привыкли расплачиваться за решение технических задач металлом машин, сложностью электроники и щедрым расходом энергии. АРИЗ вырабатывает привычку платить иной валютой — творческой мыслью. Задача может кричать: «Я совсем простая, меня легко решить, используя известные механизмы!» Но изобретатель все равно должен стремиться найти решение, не требующее машин, механизмов, устройств. Конечно, что-то, в конце концов, придется использовать. Но это «что-то» должно быть обязательно новым и более эффективным.

Посмотрим на конкретной задаче, как это происходит.

Задача 8

В лаборатории намечено провести серию испытаний системы фильтров (например, для двигателей внутреннего сгорания). В ходе испытаний в фильтры вместе с поступающим туда воздухом надо подавать песок, пыль, частицы глины и прочие сыпучие добавки. Для каждого испытания имеется график подачи добавок. Иногда надо подавать только одну какую-нибудь добавку, например, только песок, а нередко требуется одновременно подавать до 24 видов добавок. Каждая добавка подается в свое время по заранее составленному графику, поэтому смешивать добавки и подавать усредненную смесь нельзя. Вес каждой добавки от 0,01 кг до 0,03 кг. Время подачи 10 сек. Потом установку разбирают и исследуют.

Нужно предложить способ подачи сыпучих добавок. Основные требования: простота, точность, легкость переналадки (предполагается проверить сотни разных сочетаний добавок).

* * *

Эта задача была предложена слушателям, только что принятым в Азербайджанский общественный институт изобретательского творчества. Время на решение не ограничивалось, большинство справилось с задачей за

i/2-2 часа. Все слушатели — 90 человек — подошли к задаче с позиций обычного конструирования; подача порошков осуществлялась различными дозаторами. В нескольких предложениях автоматизация дозировки достигалась использованием ЭВМ!

Вот одно из решений: «К агрегату подведены 24 трубы. Перед каждой трубой вращается приспособление в виде сита. Число дырок в сите соответствует числу точек кривой для данного порошка. Диаметры дырок подобраны так, чтобы в агрегат в одну секунду могло проходить определенное количество порошка. Скорость вращения сит такова, что каждую секунду к трубам подается новое отверстие нужного диаметра». Итак, 24 дозатора — каждый с набором ежесекундно меняющихся диафрагм! Машина громоздкая, не очень надежная (отверстия в диафрагмах и трубки могут забиться) и трудно поддающаяся переналадке.

Через полтора месяца та же задача была вновь предложена слушателям. На этот раз времени на решение потребовалось вдвое меньше — и половина слушателей вышла на уровень контрольного ответа.

Решение задачи 8

Применим оператор РВС.

2-2а. Увеличим количество добавок в 100 раз. Теперь потребуются 2400 дозаторов. Получается слишком гро-* моздкая установка. Дозатор должен быть один и притом самый простой. Но из этого простого дозатора должны независимо идти 2400 порошков…

2-26. Если добавка одна, можно поставить обычный дозатор.

2-2в. Чем меньше время подачи, тем хуже будет работать дозатор. Если вместо 30 сек. в нашем распоряжении всего 0,03 сек., мы просто не успеем отдозировать порошки. Вывод: дозировку надо осуществлять заранее. Главный выигрыш в том, что заранее мы можем дозировать порошки любым способом и без спешки, следовательно, очень точно. Если у нас есть заранее отдозированные порошки (например, разложенные по секундным порциям), то дозаторы не нужны: из двух требуемых действий — отдозировать порошки и подать — остается только второе действие.

2-2г. Допустим, время подачи порошков растянуто

до года. Порошки подаются медленно — крупинка за крупинкой. В этом случае тоже есть смысл отдозировать их заранее, скажем, по недельным порциям.

2-2д. Если допустимая стоимость устройства близка к нулю, устройства нет или почти нет. Собственно, дозатор нам не нужен: мы можем любым — самым дешевым способом отдозировать порошки заранее. Значит, надо как-то избавиться и от подающего устройства.

2-2е. Если расходы на устройство могут быть высокими, попробуем изменить природный элемент системы — порошки. Соединим — хотя бы с помощью клея — каждую крупинку порошка с крупинкой ферромагнитного материала. Теперь подачей порошков очень легко управлять. Правда, неясно, как в нужный момент отделять крупинки порошка от крупинок металла.

Что же нам дал оператор РВС? Одну безусловно подходящую идею — дозировать порошки заранее. И одну дикую, но заманчивую идею: крупинки металла несут и сбрасывают частицы порошка.

Продолжим решение.

2-3. Дана система из фильтров и 24 добавок. Добавки трудно подавать в фильтры по графикам.

2-4. а) -

б) Фильтры, порошки.

Менять фильтры нельзя-мы их исследуем. Порошки тоже нельзя менять — нарушатся условия эксперимента.

2-5. Внешняя среда.

3-1. Внешняя среда сама подает порошки по заданным графикам просто и точно.

В этой формулировке, в сущности, указаны два действия- дозировать («по заданным графикам») и подавать. Но шаг 2-2 уже дал идею предварительной дозировки. Поэтому мы можем уточнить ИКР:

3-1. Внешняя среда сама подает заранее отдозиро-ванные порошки просто и точно.

3-2. Будем для простоты рассматривать один порошок, помня, что потом решение надо распространить на 24 порошка. Итак, мы имеем заранее отдозированный порошок (рис. 29); сейчас внешняя среда не подает порошок, а нам надо, чтобы она сама подавала его в воронку.

3-3. Не может выполнить требуемого действия часть внешней среды от того места, где лежат отдозированные порошки, до воронки.

Рис. 29. К задаче 8, шаг 3-2: заранее отдозированный порошок подается при помощи ленты.

3-4. а) Нам надо, чтобы эта часть внешней среды сама несла порошок.

б) Нетрудно сделать эту часть среды нз ленты. На ленту можно положить предварительно отдозированный порошок. Но куда денется лента над воронкой?

в) Несовместимость (притом не очень страшная — это уже видно) состоит в том, что лента должна быть и ленты не должно быть. Правда, требования эти относятся к разным моментам времени: пока лента несет порошок, она должна быть; когда порошок донесен, должна исчезнуть. Нечто подобное (с частицами ферромагнитного материала) у нас получилось и на шаге 2-2е.

3-5. Итак, лента должна исчезнуть над воронкой.

3-6. Либо надо уничтожить ленту, либо отвести ее в сторону.

3-7. Можно загнуть ленту: пусть возвращается назад. Получится что-то вроде ленточного транспортера. 24 транспортера? А если их 240? Плохо! Транспортер хорош, когда надо долго подавать материалы. А мы весь порошок расположили заранее — нам не нужна высвободившаяся лента транспортера.

Остается первый вариант — уничтожить ленту над воронкой. Это ближе к идеальной машине: часть машины, выполнившая свою работу, должна исчезнуть.

3-8. Куда и как будет исчезать лента? Можно отбрасывать ленту, но это, видимо, потребует применения какого-то механизма. Идеальнее, чтобы лента исчезала сама: таяла, испарялась и т. д.


ris33.jpg

4-1. Мы выиграли в точности (заранее тщательно дозируем), в простоте конструкции (набор исчезающих лент). Но вводится операция предварительной раскладку порошка на ленту.

4-2. Нетрудно нанести порошок на ленту равномерно: покроем ленту клеем, посыплем порошком, приклеим один слой. Однако нам нужна лента, несущая порошок в виде графика. Положить клей в те места, где по графику должен быть порошок? Проще вырезать график из ленты, имеющей одинаковую ширину. Вещество ленты должно легко резаться, легко покрываться клеем, легко исчезать. Обыкновенная бумага. А лучше — беззольная бумага.

4-3. Теперь трудно найти недостатки. Изготовить запас равномерно покрытых порошками листов несложно. Вырезать из этих листов нужные графики — совсем просто. Равномерно подавать один или несколько (сложенных в пачку) листов можно с помощью самых простых устройств. Сжигание беззольной бумаги над воронкой тоже не вызывает затруднений.

4-4. Мы нашли настолько простой способ, что его легко реализовать и испытать. Выигрыш отчетливо виден.

Контрольный ответ: «Способ непрерывного дозирования сыпучих материалов по весу в единице объема, например абразива, при ускоренных износных испытаниях двигателя внутреннего сгорания, отличающийся тем, что с целью повышения точности, абразив предварительно наносят равномерным слоем на поверхность гибкой ленты из легковоспламеняющегося вещества, подают ее с заданной скоростью в зону нагрева и сжигают, а абразив отводят к испытуемому объекту» (авторское свидетельство №305363).

* * *

Разумеется, практически записи решений несколько короче. Вот, например, решение В. Митрофанова, студента 5-го курса Азербайджанского института нефти и химии:

«2-3. Дана система: агрегат и добавки.

2-4. а) -

б) Агрегат, добавки.

2-5. Внешняя среда.

3-1. Внешняя среда вводит добавки вовремя и как нам нравится.

3-2. (На рисунке «Было» показаны хаотические потоки добавок, на рисунке «Стало» — упорядоченные.)

3-3. (Выделены участки — там, где насыпаются добавки.)

3-4. Внешняя среда не взвешивает, не знает времени и т. д.

3-5. Если бы ей не надо было знать ничего. Если заранее как-то все сделать».

Отсюда В. Митрофанов сразу пришел к ответу, совпадающему с контрольным. На решение было затрачено всего 20 минут.

Инженер Р. Султанов получил тот же ответ, но несколько иным путем:

«3-4. Внешняя среда не может захватить нужные количества порошков и подавать в строго определенное время.

3-5. Если внешняя среда обладала бы каким-то средством транспортировки (например, подавала бы 1 контейнер в секунду), в которое заранее насыпано нужное количество порошков. Контейнер — название условное. Допустим, оболочка, лента. После доставки лента исчезает».

Формулировки ответов на вопросы АРИЗ сохраняют индивидуальность. Но для всех сильных решений (на уровне или выше контрольного ответа) характерен общий стиль мышления:

направленность мысли, отсутствие беспорядочных скачков, суетливых метаний;

постоянная ориентировка на ИКР, стремление получить результат, расплатившись предельно-минимальным устройством;

умение легко преодолевать психологические барьеры (термин «контейнер» тянул к идее использования пакетиков, но Р. Султанов тут же отметил: контейнер — название условное. Потому что оболочка нли лента — тоже контейнеры…);

хорошее владение основными приемами устранения технических противоречий, когда малейшая подсказка анализа воспринимается как ясное указание применить тот или иной прием (были использованы приемы предва-

рительного исполнения, отброса ненужных частей, динамизации объекта).

рительного исполнения, отброса ненужных частей, динамизации объекта).

* * *

Теперь я приведу несколько задач для самостоятельного решения. Это учебные задачи: в их условиях содержатся все сведения, необходимые для решения. Каких-либо отраслевых знаний не требуется. Кроме того, поскольку задачи учебные, достаточно лишь в самом общем виде найти принцип решения.

Не ищите решение перебором вариантов. Пытаясь отгадывать (по знакомому методу «а если сделать так…»), вы лишь бесполезно затратите время. Если удастся правильно угадать ответ, ваше творческое мастерство от этого не повысится. Даже самые простые задачи надо решать по системе, это нужно для тренировки изобретательских навыков.

Решайте задачу так, как будто оценка ставится не за полученный ответ, а только за ход решения. Считайте, что самое важное — четко выстроить лесенку ответов на вопросы. Эта лесенка должна обладать двумя свойствами: первое — цельность, отсутствие логических разрывов; второе — наличие какого-то неожиданного поворота. Вспомните решение задачи 7: уже в ИКР мы пришли к выводу, что нужно получить трение без трения. Здравый смысл уводил в сторону, но мы стали последовательно искать трение без трения и движение без движения…

Задача 9

Воздух, подаваемый в аквариум, позволяет в сравнительно небольшом объеме воды содержать много рыбешек. Поэтому давно возникла мысль использовать аналогичный прием для интенсификации рыбоводства в озерах, прудах и т. п. Беда, однако, в том, что способ этот неэкономичен: лишь небольшая часть воздуха успевает раствориться в воде, основная же его масса возвращается в атмосферу. Для комнатного аквариума это не так страшно- маленький моторчик справляется с делом. Но в озерах иные масштабы; потребовалось бы возле каждого озера строить мощную компрессорную установку, прокладывать разветвленную систему труб и т. д.

Нужен иной способ — несложный, экономичный и, конечно, безвредный для рыб. Поэтому, в частности, не надо использовать реактивы, выделяющие кислород.

Задача совсем простая. Попробуйте ее решить сразу (без анализа) по таблице типовых приемов.

Задач а 10

При полировке оптических стекол используют дерево и ткани, а в последние годы — смолы и пластмассы. В зону соприкосновения стекла и инструмента подается водная взвесь полировального порошка.

Однако этот традиционный способ далек от совершенства. Полировку приходится вести на низких скоростях, так как смолы, ткани, дерево и пластмассы с увеличением числа оборотов сильно разогреваются и теряют необходимые качества.

Как повысить скорость обработки?

Вероятно, вы сразу подумаете о подаче охлаждающей жидкости: пусть вместо водной взвеси будет взвесь полировального порошка в какой-нибудь охлаждающей жидкости. Такой способ известен, он дает не очень хорошие результаты. Представьте себе полировальник в виде небольшой подушки, которая быстро вращается, плотно прижимаясь к стеклу. Как подавать охлаждающую жидкость? Сбоку? Но ведь тепло выделяется под подушкой — там, где в данный момент прижат полировальник. Устроить сквозные каналы в полировальнике? Тут мы наталкиваемся на противоречие: чем больше в полировальнике каналов, тем равномернее будет подача жидкости, но тем хуже будет работать сам полировальник, ибо он будет состоять в основном из дырок… Словом, дырчатый полировальник — не самая удачная идея.

Это тоже очень простая задача. Решите ее, используя таблицу типовых приемов.

Задач а 11

Для испытания материалов на длительную прочность в условиях высоких температур и агрессивных сред используют прочные камеры — сейфы. К образцу материала прикрепляют груз, после чего заполняют камеру агрессивным веществом, герметично закрывают и включают систему обогрева (тепловые элементы размещены в стенках камеры). Вес груза — от 0,02 кг до 2 кг.

Основная трудность при таких испытаниях связана с определением момента разрыва образца. Правда, здесь

не требуется особой точности. Достаточно, если момент обрыва будет зафиксирован с точностью до нескольких секунд, так как испытания ведутся иногда в течение многих дней. Сложность в другом: трудно обеспечить надежность сигнальных устройств, размещенных внутри камеры в сильно агрессивной среде. Нужно, чтобы момент обрыва определялся снаружи. Аппаратура, улавливающая шум падения груза, не годится — она слишком сложна и ненадежна.

Примем для определенности, что камера имеет размеры 0,4 X 0,3 м X 0»3 м, а толщина стальных стенок — около 10 мм. Итак, нужен предельно простой и надежный способ регистрации момента разрыва образца. Помните: не должно быть ни одного сквозного отверстия в стенках камеры!

Начните анализ задачи с шага 2-3.

Задача 12

Имеется пневматический конвейер. Он представляет собой наклонную трубку, по дну которой снизу вверх — под действием потока воздуха — перемещаются (катятся) мелкие штучные грузы. В нашем случае — помидоры. Трубка идет с этажа на этаж, в нескольких местах меняет направление (для наглядности можно считать, что труба расположена вдоль обычной лестницы). Недостаток системы: помидоры налетают друг на друга, ударяются, портятся.

Нужен способ пневматической транспортировки, при котором грузы будут двигаться по заданной программе с абсолютной надежностью: на определенном расстоянии друг от друга и в определенном темпе. Отказываться от пневматической системы транспортировки крайне нежелательно: потребуете» новое оборудование, а его у нас нет.

Начните решение задачи с шага 2-3.

Задача 13

В электронных схемах высокой частоты применяют так называемые линии задержки. Они служат для сдвига выходного сигнала по времени. Линии задержки представляют собой слоистую конструкцию — слои материала с низким и высоким омическими сопротивлениями чере-

дуются. Такими парами могут быть, например, стекло и сталь, сплав Вуда и медь. Толщина слоев составляет 0,1 — 0,01 мм, точность изготовления требуется высокая.

Известные способы изготовления (прессование, прокатка) малопроизводительны, дороги, дают много брака. Из некоторых пар вообще не удается получить слоистую конструкцию: материалы, составляющие пару, обычно резко отличаются по температуре плавления (стекло — до 800°, сталь-1500°, сплав Вуда -70°, медь-1083°); на тонкую пластину из сплава Вуда наложить раскаленную медную пластину, сплав Вуда просто растает.

Нужен принципиально новый способ изготовления слоистых конструкций.

Эта задача сложнее двух предыдущих: барьеры на пути к ее решению весьма высокие. Начните решение с шага 2-2.

Задача 1 4

Трубопровод далеко не всегда удается загрузить каким-либо одним нефтепродуктом.-Поэтому была предложена последовательная транспортировка, при которой разные нефтепродукты передаются по одному трубопроводу друг за другом, так сказать, встык. Способ этот в принципе имеет большое преимущество: вместо нескольких параллельных трубопроводов можно построить один. Но широкого распространения последовательная перекачка пока не получила.

Причина в том, что при перекачке одного горючего вслед за другим в зоне их соприкосновения неизбежно происходит смешивание. В связи с этим возникают сложные технические проблемы. Как, например, точно установить, когда кончается чистый бензин и начинается смесь его с дизельным топливом? А где кончается эта смесь и начинается последующий чистый продукт? Как своевременно отделить смесь от чистых продуктов и избежать загрязнения топлива, ранее поступившего в разервуары конечного пункта перекачки?

До 1960 года почти на всех магистральных нефтепроводах применялся ручной способ контроля: во время очередного цикла перекачки лаборанты контрольных пунктов в любую погоду, днем и ночью часами просиживали в сырых колодцах трубопровода, производя многочисленные анализы.


ris34.jpg

Рис. 30. Как уменьшить потери нефтепродуктов, передаваемых по одному трубопроводу?

Делалось это кустарно: прямо из трубопровода брали пробу, наливали ее в колбу и по уровню плавающего в ней поплавка определяли плотность нефтепродукта. Но разность плотности светлых горючих весьма незначительна, и «ловить» таким путем границы смешения было почти невозможно. В результате за каждый цикл перекачки только по одному трубопроводу среднего диаметра (500 мм) вместе со смесью уходило в брак от 800 до 1200 тонн чистых продуктов.

Было внесено несколько предложений. Например, предложили прибор «нефтеденсиметр», который определял сортность нефтепродуктов по их плотноети тоже на основе поплавка, но установленного в горловине трубопровода. Предлагалось также осуществлять контроль гамма-плотномером. Этот прибор действует при помощи гамма-излучений радиоактивных изотопов, устанавливая качество горючего опять-таки по его плотности. Есть ультразвуковые установки, измеряющие скорость распространения звука в жидкости.

Посмотрите на рис. 30. По трубопроводу встык движутся два разных нефтепродукта Л и Б. На стыке образуется смесь А + Б. Если бы удалось точно фиксировать границы I и II, то потери не превышали бы объема смеси. Но из-за неточности контроля приходится начинать отделение смеси раньше (линии III), а заканчивать позже (линия IV), чем это теоретически возможно. Совершенствуя методы контроля, приближают линию III к I и линию IV к II. Потери при этом уменьшаются, но смесь А + Б образуется по-прежнему. Целесообразнее обходной путь: вообще избежать образование смеси А + Б, использовав какой-то разделитель между А и Б.


ris35.jpg

Рис. 31. Разделители с манжетными и дисковыми уплотнителями.

Известны разделители (рис. 31) с манжетными, дисковыми и щеточными уплотнителями. Однако эти «ершики» имеют принципиальные недостатки: смесеобразование не предотвращается — нефтепродукты просачиваются через зазоры между стенками трубы и уплотнителями; «ершики» застревают в трубопроводах, а кое-где вообще не могут пройти. На трассе (через определенные расстояния) стоят промежуточные насосные пункты. Понятно, что пройти через насосы твердый разделитель не может.

Расположить вдоль трубопровода гибкую перегородку? Дорого, сложно, ненадежно…

Были предложены жидкие разделители: вода, лигроин» На первый взгляд это удачное решение: чтобы не происходило смешивания, достаточно взять жидкий разделитель в небольшом количестве — полтора процента от объема трубопровода. Но беда в том, что и вода, и лигроин, и любой другой жидкий разделитель в процессе транспортировки смешиваются с нефтепродуктами. Конечно, не жалко выбросить отработавшую в качестве разделителя воду, но как отделить ее от нефтепродуктов?

Психология bookap

Итак, твердые и жидкие разделители имеют серьезные недостатки. Газообразные вообще не подходят: газ поднимается в верхнюю часть трубопровода и перестает играть роль разделителя.

Проведите анализ задачи с шага 2-3.