III. Выбор метода. Психологи на распутье

Разные науки играют в разные игры


...

Правила игры в логику и математику

Практически во всех науках не рекомендуется строить противоречивые высказывания. Даже религиозные мыслители пытаются интерпретировать неоднозначные тексты священных писаний так, чтобы избавиться от явных противоречий. Однако только в науках логико-математического круга требование непротиворечивости является абсолютно обязательным и практически единственным. В этих науках вводится некий набор терминов, а затем произвольным образом задается структура операций с этими терминами. Только те из структур признаются корректными, которые при любых заданных операциях не смогут привести к противоречию. На заре истории, правда, правила построения математических структур вырастали из мистического представления о самоочевидности этих правил. Действительно, если А=В и В=С, то неизбежно (как говорили древние: аподиктически, т.е. "с непреложной очевидностью") следует принять, что А=С (аксиома транзитивности). Даже сегодня замечательный современный философ утверждает, что "элементарные арифметические и геометрические истины даны человеческому сознанию с абсолютной непреложностью", что исходные математические идеализации не выдумываются, не извлекаются из опыта, а являются изначально заданной "формой мышления".319 Всё же, однако, в процессе истории многие непреложные истины были подвергнуты сомнению.


319 Перминов В.Я Априорность и реальная значимость исходных представлений математики. // Стили в математике: социокультурная философия математики. СПб., 1999, с.86-91.


Приведу простое рассуждение, оспаривающее, например, аксиому транзитивности. Пусть интенсивность раздражителя А меньше интенсивности раздражителя В на величину, наполовину меньше порога различения. Интенсивности этих раздражителей, тем самым, субъективно не отличаются друг от друга, т.е. А=В. Пусть интенсивность раздражителя В, в свою очередь, на ту же величину меньше интенсивности раздражителя С. Соответственно, субъективно и В=С. Но при этом различие между А и С достигает пороговой величины, следовательно, эти раздражители воспринимаются как субъективно неравные, т.е. А<С. Значит, аксиома транзитивности не всегда верна. В чем же тогда непреложность очевидности этой аксиомы? Предвижу возражение: в примере речь идет о субъективном равенстве, а аксиома, мол, говорит о равенстве объективном. Отвечаю вслед за Гераклитом и Платоном: объективного равенства вообще нет в природе. Даже в одну и ту же реку нельзя войти дважды. Если говорят, что А=В, то это, очевидно, означает лишь субъективное приравнивание друг к другу двух разных А и В — ведь А и по обозначению, и по сути изначально не есть В. (Если сказанного недостаточно, то желающие могут посмотреть, как об этом весьма пространно рассуждает Гегель).

Еще один пример неочевидности того, что было «непреложно очевидно» древним. В школе вслед за античными геометрами нас учили доказывать теоремы от противного. Допустим, говорили мы, что доказываемая теорема неверна. Если в результате этого предположения мы приходим к противоречию, то, следовательно, верно обратное: доказываемая теорема верна. Подобное рассуждение опирается на закон исключенного третьего: верно или А, или не-А, третьего не дано (tertium non datur). Казалось бы, это тоже очевидно. Однако рассмотрим пример. Возьмем пары идущих подряд простых чисел, разница между которыми равна двум (например, 3 и 5, 11 и 13, 17 и 19 и т.д.). Число таких пар в бесконечном ряду натуральных чисел или конечно, или бесконечно. Третьего, вроде бы, не дано. Поэтому мы имеем полное право определить число Z следующим образом: Z=0, если число таких пар конечно; Z=1, если число таких пар бесконечно. Все корректно, оба возможных варианта рассмотрены, следовательно, Z однозначно определено. Но чему же оно равно? Не знаем. Потому что мы не знаем, конечен ли набор рассматриваемых пар. Но, значит, говорят сторонники математического интуиционизма, закон исключенного третьего не всегда верен. Стоит принять иной закон: или А, или не-А, или третье — не знаем. Но отсюда следует: доказательства от противного не всегда возможны.320 Не ставлю здесь задачу обсуждать интуиционистскую логику. Мне важно лишь поставить вопрос: разве столь уж однозначно (аподиктически) очевиден закон исключенного третьего?


320 Гейтинг А. Интуиционизм. М., 1965.


Математика исторически появляется в рамках мистического познания, когда посвященные начинают дарить своим ученикам свет Истины. Они учат их выводить из заведомо очевидных, а, следовательно, Истинных высказываний (аксиом) по заведомо очевидным Истинным правилам вывода новое Истинное знание и, тем самым, описывают, как они полагают, Истинную гармонию мира. Не случайно математика и музыка оказываются отождествленными в головах античных ученых, да и в некоторых современных тоже.321 Неожиданно выясняется, что полученный в итоге результат может и не обладать свойством очевидности. Пифагорейцы, например, были потрясены идеей иррациональных чисел. Существование таких чисел заранее ими никак не предполагалось, они казались невероятными. Потому и знакомство с теоремой Пифагора было даровано только посвященным. Однако мудрые греки, несмотря даже на субъективную непредставимость иррациональности, признали эти числа истинными.


321 Лосев А.Ф. Музыка как предмет логики. // Лосев А.Ф. Форма, стиль, выражение. М., 1995, с.405-602.


Так родилась норма: если все преобразования делать правильно, то и независимый от осуществляющего их мудреца результат преобразований будет правильным, даже если он будет казаться непонятным. Архимед был потрясен тем, что объём шара, вписанного в цилиндр, в точности равен 2/3 объёма цилиндра. Разве можно было об этом догадаться? Ошеломленный Архимед даже завещал поставить эти фигуры на свою могилу — как говорят, это и было выполнено римлянами, правда, после того, как во время штурма Сиракуз они убили великого математика.322 А вот, например, оригинальный результат, полученный Л. Эйлером: сумма ряда +1–1+1–1+1–1+1–1…= 1/2 (для доказательства надо было увидеть, что ряд представляет собой геометрическую прогрессию, где каждый следующий член ряда получается умножением предыдущего на –1). Этот результат выглядит совсем непонятным?323 Что ж, чем субъективно неожиданнее, тем интереснее. Так появляется специфическая интеллектуальная игра (интереснее шахмат и Олимпийских игр), победителем в которой выступает тот, кто раньше других обнаружит неведомое. Считается, что Фалес был первым, кто превратил математику (геометрию) в такую игру. А. Шопенгауэр в какой-то мере был прав, когда назвал геометрическое доказательство мышеловкой.324


322 Любищев А.А. Наука и религия. СПб., 2000, с.238.

323 Стили в математике: социокультурная философия математики. СПб., 1999, с.256.

324 Цит. по: Блэк М. Метафора. // Теория метафоры. М., 1990, с.161.


Отход математики от мистического обоснования с помощью требования субъективной очевидности всех проводимых операций протекал долго и болезненно. Лишь в XIX в. стало появляться предчувствие, что единственно Истинных аксиом и несомненно достоверных Истинных правил вывода вообще не существует. Но тогда в принципе можно придумывать любые аксиомы и создавать любые правила игры. Создание новых логических и математических структур — это есть лишь создание правил новых математических игр, где одни признанные аксиоматически правильными высказывания преобразуются в другие. Математика сродни мифотворчеству, — утверждал великий математик ХХ в. Г. Вейль.325 «Аксиомы, — признавался А. Эйнштейн, — свободные творения человеческого разума».326 Важно лишь, чтобы и аксиомы, и правила для самих играющих были однозначны и не приводили в итоге к противоречию. Ведь если один игрок играет по одним правилам, а другой — по другим, или если один игрок одновременно должен делать два разных, не совместимых друг с другом действия, то игры не получится. Играющий в преферанс в принципе не способен выиграть у человека, играющего в этот момент в подкидного дурака, в шашки или в биллиард. Нельзя ни назвать какую-либо одну из игр верной, ни оценить, кто из игроков, играющих в разные игры, играет лучше. Так и в логико-математических науках — оценке подлежит только одно: может ли данное высказывание быть получено из заданной системы аксиом путем тавтологических преобразований (т.е. преобразований по заданным правилам) самих этих аксиом. В этих науках нет и не может быть критерия оценки истинности высказывания как достоверного высказывания об окружающем мире, есть только критерий оценки правильности, корректности высказывания.


325 Вейль Г. Симметрия. М., 1968, с.8.

326 Эйнштейн А. Собр. соч., т.2, М., 1966, с.84.


 Сами по себе разные игры отнюдь не обязательно должны быть согласованы между собой и взаимно непротиворечивы. Соответственно разных математических структур может быть много, и они вполне могут противоречить друг другу. Сами математики тоже осознали это далеко не сразу. Творцы неэвклидовой геометрии К.Ф. Гаусс и Н.И. Лобачевский еще не могли допустить возможность существования множества равно корректных геометрий и хотели понять, какая из геометрий более правильная.327 А математически менее просвещенная публика видела в создании не знакомой им эвклидовой, а какой-то иной геометрии просто сплошную дурь. Вот пишет Н.Г. Чернышевский: "Лобачевского знала вся Казань. Вся Казань единодушно говорила, что он круглый дурак" И делает показательный вывод: "Это смех и срам серьезно говорить о вздоре, написанном круглым дураком".328 Да, ладно! Чернышевский хотя и был ярым проповедником мифа о естественных науках, но сам же признавался, что не знает и не хочет знать ни самих этих наук, ни математику. Специалистам лишь спустя почти столетие после создания неэвклидовой геометрии стало понятно, что могут развиваться совершенно разные математические структуры, просто применяться они должны к разным задачам. Г. Минковский в начале ХХ в. создал псевдоэвклидовую геометрию. В ней дополнительным к обычной эвклидовой геометрии и не противоречащим её аксиомам правилом — новой аксиомой — было утверждение о существовании не менее двух прямых, которым запрещено проходить через каждую точку. В итоге оказалось, что хотя в этой странной геометрии не верна теорема Пифагора, но зато она хорошо подходит к описанию специальной теории относительности.


327 Овчинников Н.Ф. Методологические принципы в истории научной мысли. М., 1997, с.147-158.

328 Чернышевский Н.Г. Избранные философские сочинения. М., 1938, с.508.


Но все-таки логика и математика — это не игра в бисер. Как правило, и логики, и математики конструируют и развивают такие структуры, которые интуитивно кажутся им осмысленными, привязанными к внутреннему или внешнему миру. Что, например, побудило Минковского ввести упомянутую выше аксиому? На стандартном графике пути (S) по времени (t) прямая, проведенная через точку и перпендикулярная оси времени t, не имеет физического смысла (так как никакое перемещение невозможно без затрат времени). Если рассматривать сам график как некую геометрическую конструкцию, отражающую реальные физические явления, то подобные прямые в этой геометрии следует запретить. А если учесть, что скорость любого перемещения, согласно теории относительности, не может превосходить скорости света, то появится уже огромное число запрещенных прямых, проходящих через данную точку. Эти прямые, на самом деле, и вводятся обсуждаемой аксиомой, ибо если запрещены, по меньшей мере, две прямые, то далее уже можно доказать, что всех запрещённых прямых бесконечно много.

Однако природа логико-математического знания такова, что побуждает анализировать любые создаваемые математические структуры — не зависимо от того, что именно вызвало их создание. Результаты математической работы никогда не оцениваются по непосредственной пользе, которая обычно, впрочем, вообще отсутствует. Оценивается красота найденного приема доказательства, возможность использования этого приема в других исследованиях, логическая завершенность и строгость изложения и т.п. Другое дело, что математики живут в реальном социокультурном мире, а этот мир так или иначе стимулирует исследование тех структур, которые имеют ценность за пределами чисто внутренних математических интересов.

Психология bookap

Люди всегда хотят делать надежные, не приводящие к противоречию выводы, а потому без развитых логических и математических структур им не обойтись. Некоторые из математических структур оказались, к тому же, удивительно хорошо приспособлены для формулировок физических законов и выведения из этих законов проверяемых следствий. Однако, думается, не следует рассматривать математику как «чудесный дар, который мы не понимаем и которого не заслуживаем», как написал в своей знаменитой статье "Непостижимая эффективность математики в естественных науках" выдающийся физик Е. Вигнер. Просто любое естественнонаучное утверждение должно быть написано на каком-нибудь языке, а математика — это универсальный язык для непротиворечивого, однозначного и тождественного преобразования высказываний, а потому вообще самый надежный, самый корректный язык, который только может существовать. Этим языком может пользоваться кто угодно и для каких угодно задач: не только физики, но и банкиры, пчеловоды, кардиналы. Ибо только на этом языке можно надежно сделать достаточно сложное и при этом, если не обсуждать тонкости, заведомо непротиворечивое описание мира. Для самих же математиков — это единственно употребимый язык для описания действий с придуманными ими же самими объектами, которых в реальности заведомо не существует.

Логические рассуждения применяются во всех сферах жизнедеятельности человека. Они нужны и в обыденном познании для того, чтобы обосновывать себе и другим собственные неочевидные идеи, так как очевидные идеи обычно просто не требуется обосновывать. Основной вопрос, на который мы при этом отвечаем: правильно ли в процессе доказательства одни высказывания были преобразованы в другие высказывания? Если преобразования были сделаны правильно, то критиковать полученный в итоге вывод нелепо, даже если сам этот вывод кажется интуитивно неверным или бессмысленным.