ПРИЛОЖЕНИЯ

Приложение I ВОЛНЫ: Переход квантового состояния


...

Волны и частицы


Теперь давайте объединим некоторые из этих представлений о материи. Вы вспомните, что в классической физике, равно как и в сегодняшней медицине, частица по прежнему рассматривается как частица, химическое вещество как химическое вещество, а ваше тело — как тело. Теперь квантовая физика и теория струн добавили к этому представление о частицах и телах как облаках вероятности или просто волнах.168


168 В физике взаимосвязь между волнами и частицами устанавливается путем вычисления вероятности нахождения частицы в данном месте и в данное время. Это вычисление осуществляется путем возведения в квадрат нормированной амплитуды волновой функции соответствующего состояния. Для этого берут высоту (или амплитуду) волны и умножают ее саму на себя, получая вероятность наличия измеримой «частицы» в общепринятой реальности.




ris7.png



Мы только что узнали, что любая волна является суммой других волн. Любая волна — это сумма других волн или параллельных миров. Вспомните, что в первых главах этой книги я рассказывал о том, что Дэвид Бом (и его предшественник Де Бройль) рассматривали частицу в общепринятой реальности, например, электрон, как обладающий массой точечный объект, ведомый через пространство и время своей волной. Бом представлял себе квантовую волну как «пилот-волну».169


169 Де Бройль считал сами квантовые волны «волнами материи» и рассматривал частицы просто как сгущения или «пучности» таких волн. Бом добавил к этому представление о виртуальной частице, как точечном материальном объекте в центре пучности (как показано на рисунке). Это позволяло рассматривать взаимодействие частиц как столкновение (или «взаимное рассеяние») абсолютно упругих тел (что соответствовало картине, реально наблюдаемой в экспериментальной физике), вводя поправочный коэффициент («квантовый потенциал»), учитывающий влияние «пилот-волн» (пер.)


(Надписи на рисунке: Электрон и его пилот-волна; Схема представлений Бома о материи)

Представление Бома о частицах учитывает виртуальную природу материи, которую мы переживаем в своих телах (как информационную природу интенционального поля), в то же время включая в себя картину того, как мы договорились представлять себе материю и самих себя в общепринятой реальности (то есть, в виде частиц, объектов и людей в пространстве и времени).170


170 Дэвид Пиит в своей прекрасной книге «Луна Эйнштейна» (David Peat, Einstein’s Moon, стр. 148 и далее) обсуждает идеи Бома элементарным нематематическим языком. Хотя основной математический формализм Бома согласуется с общепринятой интерпретацией физики, Пиит показывает, как некоторые физики, не поняв полностью идеи Бома, отвергали его интерпретацию квантовой механики, поскольку по представлениям Бома, картина частицы остается более или менее «частицей». Ее волновое уравнение, которое Бом называет «квантовым потенциалом», становится новым видом «ин-формации» или нелокальной направляющей силы. Хотя квантовый потенциал носит причинный характер и определяется точным уравнением, путь частицы является неопределенным, поскольку небольшие изменения значений окружающей среды создают небольшие изменения квантового потенциала. Позднее, Бом расширил свою «причинную» интерпретацию, сохранив существенную неопределенность пути частицы (из-за чувствительности квантового потенциала).

170 Споры о философии физики и интерпретации волновых функций для меня не так важны, как их связи с психологией осознания и психологическим опытом. Нелокальные, неизмеримые поля можно «чувствовать» как внутренние и близкие, хотя в общепринятой реальности они могут связывать очень отдаленные объекты. В отличие от физических полей, вроде магнитного поля вокруг магнита, чувство сущности или информативное качество квантового потенциала не уменьшается с расстоянием. Влияние магнитного поля на кусок железа ослабевает по мере того, как магнит и кусок железа отделяют друг от друга. Квантовый потенциал или направляющая волна оказывает неуловимое информирующее «действие», которое может быть «на заднем плане» других реальных полей, поддающихся измерению, вроде магнетизма и гравитации. Вот почему я назвал квантовый потенциал и его волновую функцию «силой безмолвия» — не поддающимся явному измерению едва уловимым нажимом или разумом, который мы субъективно переживаем, как управляющий нами.


Шрёдингер полагал, что амплитуда (или высота) квантовой волны соответствует важности этого отдельного квантового состояния для системы в целом.171 При возведении в квадрат, эта амплитуда становится вероятностью событий в общепринятой реальности.


171 Квантовое состояние — это состояние квантованной системы, описываемое ее квантовыми числами. Например, у водорода четыре таких квантовых числа — 1, 0, 0, и ½ — описывающих характеристики электрона (его энергии и спины).


Расстояние между подошвами (проекциями гребней) волн — длина волны — соответствует индивидуальной частоте, или «тону» виртуальных, неизмеримых квантовых состояний.

(Надписи на рисунке, сверху вниз, слева направо: Смысл квантовых волн; Расстояние дает тон; Амплитуда или высота дает важность)

Открытие Шрёдингером волнового уравнения представляет собой одно из великих достижений XX в., оказавшее огромное влияние на большую часть физики и, теоретически, на всю химию. Это чрезвычайно мощный математический инструмент для понимания атомной структуры материи.

Первоначально, Шрёдингер назвал квантовые волны «волнами материи», подразумевая под этим нечто «материальное», что со временем можно было бы измерить. Эти волны оказались неизмеримыми с точки зрения общепринятой реальности, но они «материальны» в смысле телесно переживаемого опыта. Интуитивные догадки Шрёдингера в отношении субатомных сфер, на мой взгляд, были, так сказать, интуитивным ощущением разума сновидящего тела. Некоторые называют его Великим Духом. Другие, возможно, говорят о нем, как о «квантовом уме». Для Шрёдингера это были «волны материи».