ЧАСТЬ ПЕРВАЯ. САМОЗАРОЖДАЮЩИЕСЯ И РАЗРУШАЮЩИЕСЯ СТРУКТУРЫ

3.5. Обучение без учителя

 Но пред моим судом, покуда сердце бьется.
Мы силы равные, и торжествую я.
Еще ты каждый миг моей покорна воле,
Ты тень у ног моих, безличный призрак ты;
Покуда я дышу - ты мысль моя, не более
Игрушка шаткая тоскующей мечты.

А.А.Фет.

В предыдущих разделах был рассмотрен процесс обучения системы с учителем. В то время, когда на вход системы окружающая среда оказывала воздействие значениями входных переменных х и у, учитель, предъявлял на выход значение z. При этом процесс обучения по каждому обучающему набору (x,y,z) состоял из двух этапов:

1) уничтожение нейронов, которое происходило, если возникающее напряжение превышало жизненную силу нейронов;

2) рождение нейронов, способных выполнить операцию d, исходя из требования минимизации целевой функции

mind (z-d(x,y))2 .

В результате, учитывая, что d может принимать значения только из некоторого фиксированного множества значений, минимизация целевой функции по d осуществлялась путем простейшего перебора.

Теперь рассмотрим ситуацию, которая может возникнуть при отсутствии учителя у системы. Отсутствие учителя предполагает, что значение z не определено. Когда выходной результат не известен, система может предположить следующее:

1) правильный ответ - это отсутствие ответа, т.е. ответа не должно быть вообще;

2) правильный ответ выходит за возможности системы и поэтому его не должно быть;

3) ответ принадлежит к множеству выходных значений системы.

Получается, что при отсутствии учителя система должна минимизировать целевую функцию уже по двум параметрам (z и d):

mind,z (z - d(x,y))2 .

Безусловно, что, если возможное z принадлежит к множеству выходных значений системы, то минимизация только по z является более привлекательной, так как не требует от системы именно в данный момент никакой дополнительной внутренней перестройки. Правда, при этом неизвестно, как этот ответ из серии "сказал - не подумал" в дальнейшем отзовется на судьбе системы.

Исследуем процесс обучения без учителя для СР-сетей, исходя из следующих начальных волюнтаристических предположений:

1) система обучена на некоторой обучающей выборке, т.е. количестве элементов СР-сети больше ноля;

2) на вход поступают значения, с которыми в процессе обучения система не сталкивалась;

3) получаемый выходной результат выходит из диапазона значений, в рамках которого работает система. Образно говоря, "сказать хочется, а слов нет".

Какие возможны в данной ситуации варианты поведения системы?

Вариант 1

1. Признать полученный результат неверным.

2. В качестве выходного результата определить действие "ничего не делать" или пустое (нулевое) значение, которое всегда принадлежит множеств выходных значений.

3. Осуществить процесс обучения (разрушение и генерацию нейронов) для поступивших входных значений и выходного значения, определенного в п. 2. Таким образом, система самостоятельно от неизвестной ей схем] "обучение без учителя" переходит к известной схеме "обучение с учителем".

Вариант 2

1. Признать полученный результат неверным.

2. В качестве выходного результата определить значение, наиболее близкое к полученному результату, но принадлежащее множеству допустимых для выходного результата значений.

3. Осуществить процесс обучения (разрушение и генерацию нейронов для поступивших входных значений и выходного значения, определенно в п.2.

Вариант 3

1. Признать полученный результат правильным. Невозможность его реализации объяснить несовершенством системы по генерации соответствующих выходных значений. Например, система неспособна мгновенно взлететь в небо или закопаться в землю. Но другого решения не искать, а попытаться реализовать полученное путем изменения собственных "физических" возможностей или путем разрушения ограничений на диапазон выходных значений.

Вариант 4

1. Признать полученный результат правильным. Невозможность его реализации объяснить несовершенством системы, ее неспособностью к генерации соответствующих выходных значений.

2. Выработать такой выходной результат, который, изменяя окружающую среду, позволял бы избежать в дальнейшем поступления на вход подобных входных значений.

3. Осуществить процесс обучения (разрушение и генерацию нейронов) для поступивших входных значений и выходного значения, определенного в п.2.

Психология bookap

Что интересно, выбор того или иного варианта поведения системы во многом определяет черты ее характера, если, конечно, проводя аналогию с живым существом, можно это назвать чертами характера, например:

смирение - присущая системе ориентация в большей степени на первый вариант поведения; упрямство - ориентация на третий вариант и т.п. Таким образом информационная система начинает приобретать индивидуальность.