Вниз по лестнице, ведущей вверх


...

Лестница

История мозга своими корнями уходит очень глубоко. 2–3 миллиарда лет природа колдовала над живыми организмами, прежде чем из жиденькой сети нервных клеток, из крохотных нервных узелков возникла наиболее сложно устроенная на нашей планете материя – человеческий мозг. Знать, как это произошло, необходимо. Прослеживая, как этап за этапом усложнялась высшая нервная деятельность животных, лучше понимаешь работу человеческого мозга.

За 70 лет поисков и находок исследователи поведения животных сумели спуститься до самой последней ступеньки грандиозной лестницы эволюции. Отправимся туда и мы, чтобы затем пройти путем, которым карабкались наверх животные нашей планеты. Нам придется подниматься быстро, перепрыгивая через пять-десять ступенек сразу. Лишь на самых важных удастся задержаться на короткое мгновение.

Какие ступени эволюции наиболее важны? Решить этот вопрос – значит ответить на основные загадки мозга, а они, как известно, еще не разгаданы. Я поведу вас так, как мне представляется целесообразным, не претендуя на то, что выбранный мною путь самый правильный.


ris18.png

Итак, два-три миллиарда лет назад в солоноватом бульоне мировых океанов появились первые комочки живого вещества, прообразы настоящих одноклеточных организмов. Они обладали основным качеством, присущим всему живому, – свойством раздражимости и способностью передавать возбуждение из одного участка крохотного организма другому, то есть проводимостью.

Позже некоторые организмы стали селиться вместе, образуя колонии. Такие компанейские одноклеточные существа стали прообразом первых многоклеточных организмов. Многоклеточный организм – большое хозяйство; чтобы разумно управлять им, целесообразно иметь какой-нибудь командный пункт. Ничего похожего поначалу не было. Все клетки первых многоклеточных организмов были равны между собой. Любая из них имела право возбудиться, а когда возбуждение распространится на всю клетку, могла передать его ближайшей соседке. Вот и все новшество. На Земле и сейчас существуют примитивные организмы, не имеющие специальных систем управления. Это губки. Передавая возбуждение от соседа к соседу, губки способны осуществлять некоторые координированные акты.

Медузы и актинии живут во всех морях земного шара. Внешне они выглядят совсем неинтеллектуальными существами, какими действительно и являются. Но посмотрите, как ловко хватает актиния проворных и юрких рыб и, облепив щупальцами, тянет в рот. Отдаленные предки этих животных первыми обзавелись примитивным аппаратом для координации движений. У них появились особые клетки, главной функцией которых стали раздражимость и проводимость. Они первые отзываются на воздействия окружающей среды и быстро передают возбуждение остальным клеткам, позволяя организму немедленно реагировать.

У типичной нервной клетки небольшое тело и несколько отростков, по длине значительно превосходящих саму клетку. Их задача обеспечить связь между отдельными районами тела. Раздражение любого участка тела может очень быстро вызвать возбуждение всего организма. Объединяя все части тела животного, нервная система является главным интегратором организма.

Нервная система кишечнополостных (к ним и относятся актинии, гидры, медузы) весьма примитивна. Она представляет собой довольно жиденькую сеть нервных клеток. Их три типа: чувствительные, двигательные и ассоциативные. Первые предназначены для восприятия падающих на организм раздражений, вторые передают возбуждение на сократимые клетки тела, а клетки третьего типа обеспечивают связь чувствительных и двигательных нейронов, передавая возбуждение от первых ко вторым. Одна чувствительная нервная клетка может быть связана своими отростками с несколькими ассоциативными клетками, а те, в свою очередь, имеют контакт с несколькими другими ассоциативными и двигательными нервными клетками. Вот почему при ловле добычи щупальца действуют быстро и координированно.

Определенным усовершенствованием нервной системы стало появление сгущений нейронов и их отростков в тех местах, где требовалась согласованная работа большого количества сократимых клеток. Нервные тяжи, образованные такими скоплениями, есть у гидр и актиний. У медузы два нервных кольца проходят по краю купола, что позволяет ей, сжимая купол, активно передвигаться в толще воды.

Затем возникли более четко выраженные нервные тяжи, где оказалось сосредоточенным большинство нервных клеток. Такая нервная система в виде самостоятельного органа впервые появилась у гребневиков, животных, напоминающих медуз, и достигла вершины развития у плоских червей. У них все клетки собраны в нервные тяжи, которые, многократно пересекаясь, покрывают реденькой сетью все тело червя.

Нервная система в виде сети нервных стволиков – значительное достижение эволюции. Но, пойдя по этому пути, природа оказалась бы в тупике. Такая нервная система слишком сложна и громоздка и сама нуждается в руководящем органе.

Верховный командный центр нервной системы впервые появился у наиболее развитых плоских червей. В местах пересечений нескольких крупных стволиков у них возникли утолщения – ганглии, скопления нервных клеток. Ганглии в первую очередь образуются вблизи органов чувств и важнейших органов тела: глаз, органа равновесия, глотки. Постепенно к ним переходит верховная власть.

Нервная система, построенная из ганглиев, оказалась удачной. У кольчатых червей, которые, по-видимому, произошли от плоских, все нервные клетки собраны в ганглии, а в нервных стволах, их соединяющих, проходят лишь отростки этих клеток. В каждом членике червя находится пара ганглиев, соединенных перемычками между собой и с ганглиями соседних члеников тела и посылающих нервы к ближайшим органам. Первая пара бывает самой крупной и выполняет наиболее сложную работу, так как именно сюда поступает важнейшая информация от зрительных и обонятельных анализаторов, а также органов равновесия.

Первые ганглии держат в известном подчинении всю остальную часть нервной системы. Они прообраз головного мозга высших животных. У некоторых видов высших кольчатых червей все ганглии сблизились между собой, составляя единое компактное образование. Такая нервная система отчасти напоминает мозг низших позвоночных животных. У ланцетника, одного из самых примитивных представителей хордовых животных, она имеет вид однородной нервной трубки. Головного мозга у него нет. Все остальные представители позвоночных, стоящие на эволюционной лестнице выше ланцетника, им обладают.

У миног и миксин в головном мозге можно различить все основные отделы. Сохраняя в самых общих чертах единый план строения от миноги до человека, все отделы мозга претерпевают значительное развитие.

Наиболее интенсивно эволюционирует передний, или, как правильнее называть, конечный мозг. У миног, миксин и настоящих рыб конечный мозг занят лишь анализом сведений, добытых с помощью обоняния. Правда, самые новейшие исследования показали, что и другие органы чувств, в том числе глаза, шлют сюда какую-то информацию, но только не о том, что видят. Возможно, глаза доводят до сведения конечного мозга лишь сам факт поступления новой информации, не раскрывая ее содержания. Остальные органы чувств отправляют сообщения, каждый в особый отдел головного мозга, которые недостаточно хорошо связаны между собой. В таком мозгу не развита способность комплексно обрабатывать всю поступающую информацию.

У амфибий и особенно у рептилий все больше и больше сведений начинает поступать в конечный мозг. Он становится средоточием всех высших психических функций.

Особенно серьезные изменения претерпевает мозг млекопитающих. У них также главным образом развивается конечный мозг, в первую очередь кора больших полушарий. Уже у самых низших млекопитающих для всех видов чувствительности в коре намечаются анализаторные зоны, хотя они еще усердно помогают друг другу. По мере эволюции помощь постепенно сокращается, и у высших млекопитающих каждая анализаторная зона получает информацию только об одном виде раздражителей.

Психология bookap

Важный этап эволюции – возникновение в мозгу грызунов и близких к ним животных крохотных зон, которые в анализе показаний рецепторов непосредственного участия не принимают. В эти участки попадает информация, уже прошедшая обработку в других отделах коры, поэтому они называются вторичными, или ассоциативными зонами. Здесь совместно обрабатывается информация от различных анализаторов.

Ассоциативные отделы коры развиваются наиболее бурными темпами. У хищных животных, собак и кошек они уже имеют существенные размеры. В коре обезьян эти зоны перекрытия – так их тоже принято называть – занимают четвертую или даже третью часть, а у человека – подавляющую часть коры, оставляя для анализаторных зон лишь незначительные по размерам участки. Именно деятельность ассоциативных областей коры больших полушарий обеспечивает выполнение высших функций нашего мозга. Они-то и делают нас людьми.